Page 299 - DMTH401_REAL ANALYSIS
P. 299

Unit 24: Fundamental Theorem of Calculus




          24.5 Review Questions                                                                 Notes

          1.   Find the primitive of the function f defined in [0, 2] by

                         Î
                    ì x if x [0,1]
               f(x) = í
                         Î
                    î I if x [1,2]
                    2                                     ì x if x ¬ [0, 1]
                    ò
          2.   Find  f(x) dx  where f is the function given in f(x) =  í
                    0                                     î 1 if x ¬ [1, 2]
                       b
                         n
          3.   Evaluate  x dx  where n is a positive integer.
                       ò
                       1
          Answers: Self  Assessment
                                                           x
          1.   intermediate value property       2.   F(x) = ò f(t) dt, x E[a,b].
                                                           a
          3.   antiderivative

          24.6 Further Readings




           Books      Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
                      (3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).

                      G.F.  Simmons: Introduction  to Topology and Modern  Analysis,  Ch.  2(9-13),
                      Appendix 1, p. 337-338.
                      Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
                      Ch.15(15.2, 15.3, 15.4)
                      T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.
                      S.C. Malik: Mathematical Analysis.

                      H.L. Royden: Real Analysis, Ch. 3, 4.




























                                           LOVELY PROFESSIONAL UNIVERSITY                                   293
   294   295   296   297   298   299   300   301   302   303   304