Page 294 - DMTH401_REAL ANALYSIS
P. 294

Real Analysis




                    Notes          Proof: Since f is integrable on [a,b], it is bounded. In other words, there exists a positive number
                                                        Î
                                   M such that  f(x) £  M, "  x [a,b].
                                                                                          e
                                   Let  > 0 be any number. Choose x,y Î [a,b], x < y, such that  x y-  <  .  Then
                                                                                          M
                                                                       y      x
                                                           F(y) F(x) =  ò f(t) dt -  ò  f(t) dt
                                                              -
                                                                       a      a
                                                                       x      y      x
                                                                     =  ò f(t) dt +  ò  f(t) dt - ò f(t) dt
                                                                       a      x      a
                                                                      y
                                                                     =  ò f(t) dt
                                                                       x

                                                                      y
                                                                     £  ò  f(t) dt
                                                                      x
                                                                      y
                                                                     £  ò Mdt =  M(y x) < Î
                                                                                -
                                                                      x
                                   Similarly you can discuss the case when y < x. This shows that F is continuous on [a,b]. In fact this
                                   proves the uniform continuity of F.
                                   Now, suppose f is continuous at a point x  of [a, b]
                                                                    0
                                   We can choose some suitable h  0 such that x  + h Î [a, b].
                                                                       0
                                   Then,
                                                                       0 x +  h  0 x
                                                       F(x  + h) – F(x ) =  ò  f(t) dt -  ò  f(t) dt
                                                          0       0
                                                                       a        a
                                                                       0 x    0 x + h   0 x     0 x +  h
                                                                     =  ò  f(t) dt +  ò  f(t) d(t) - ò f(t) dt =  ò  f(t) dt
                                                                      a        0 x      a        0 x
                                   Thus,

                                                                       0 x +  h
                                                       F(x  + h) – F(x ) =  ò  f(t) dt                     …(1)
                                                          0       0
                                                                       xn
                                   Now

                                                                         +
                                                 F(x +  h) F(x )       1  x0 h   1   0 x + h
                                                        -
                                                   0        0  -  f(x ) =  ò  f(t) dt -  ´  ò  f(x ) dt
                                                                                         0
                                                      h          0     h  x0     h   0
                                                                         0 x +  h
                                                                       1
                                                                               -
                                                                     =    ò  [f(t) f(x )]dt .
                                                                                   0
                                                                       h
                                                                          0 x
                                   Since f is continuous at x , given a number Î >0, 3 a number  > 0 such that  f(x) f(x )-  <  /2,
                                                       0                                               0
                                   whenever  x x-  0  <   and x Î [a,b]. So, if  h <   then  f(t) f(x ) < Î /2, for  t Î [x ,x +  h ],  and
                                                                                 -
                                                                        ,
                                                                                     0
                                                                                                    0
                                                                                                      0
                                   consequently
          288                               LOVELY PROFESSIONAL UNIVERSITY
   289   290   291   292   293   294   295   296   297   298   299