Page 290 - DMTH401_REAL ANALYSIS
P. 290

Real Analysis




                    Notes                       p
                                   Now, when  a =  , we have, from
                                                2
                                                           2 ln(1 cos cosx)+  a  æ p ö
                                                           p
                                                      I(a) =   0 ò  cosx  dx, I ç ÷  =  0
                                                                              è
                                                                               2 ø
                                   Hence,
                                                           a
                                                      I(a) =  ò  -a da
                                                           p
                                                           2
                                                            1  a
                                                        =  - a  2
                                                           2   p
                                                               2
                                                          p  2  a 2
                                                        =    -  ,
                                                           8   2
                                   which is the value of the integral I(a).

                                                                           2p  cos q
                                          Example: Here, we consider the integral  ò  e  cos(sin )dq .
                                                                                      q
                                                                           0
                                   We introduce a new variable f, and rewrite the integral as
                                                           2p
                                                                    f
                                                     f( ) =  0 ò  e  f  cos q  cos( sin )dq
                                                      f
                                                                        q
                                                             2p
                                                    f
                                                                        q
                                   Note that for  f =  1, f( ) =  f(1) =  0 ò  e  cos q  cos(sin )dq
                                   Thus, we proceed
                                                      df   2p ¶
                                                                       f
                                                        =  ò   (e f  cos q  cos( sin q  ) ) dq
                                                      df   0 ¶f
                                                           2p  f  cos q
                                                                            q
                                                                         f
                                                                    q
                                                        =  ò  e  (cos cos( sin ) sin sin( sin ))dq
                                                                                      f
                                                                                          q
                                                                                  q
                                                                              -
                                                           0
                                                           2 1 ¶
                                                            p
                                                                         f
                                                        =  ò 0 f ¶q (e f  cos q  sin( sin q  ) ) dq
                                                          1  2p  f cos q
                                                                        f
                                                        =   0 ò  d (e  sin( sin  ) ) q
                                                          f
                                                                          2p
                                                          1
                                                                    f
                                                        =  (e f cos q sin( sin  ) ) q
                                                          f
                                                                          0
                                                        = 0.
                                                                                               df
                                   From the equation for f(f) we can see f(0) = 2p. So, integrating both sides of   =  0  with respect
                                                                                               df
                                   to f between the limits 0 and 1, yields
                                                     f(1)  1
                                                     ò  df =  0 ò  df =  0
                                                    f(0)
                                                f(1) – f(0) = 0



          284                               LOVELY PROFESSIONAL UNIVERSITY
   285   286   287   288   289   290   291   292   293   294   295