Page 287 - DMTH401_REAL ANALYSIS
P. 287

Unit 23: Differentiation of Integrals




                                                                                                Notes
                             æ  1 + a  æ x ö ö
          As x varies from 0 to p,   ç  ×  tan ç ÷÷   varies through positive values from 0 to ¥ when –1 < a
                             è  1 - a  è 2 øø
                 æ  1 + a  æ  x ö ö
          < 1 and   ç  ×  tan ç ÷÷   and varies through negative values from 0 to –¥ when a< –1 or a > 1.
                 è  1 - a  è  2 øø
          Hence,

                                                p
                                   æ  1 + a  æ  x ö ö  p
                                                            1
                             arctan  ç  ×  tan ç ÷÷  = -  when - < a < 1
                                   è  1 - a  è  2 øø  2
                                                0
          and
                                              p
                                 æ 1 + a  æ x ö ö  p
                           arctan  ç  ×  tan ç ÷÷  = -  when a < - 1 or a >  1.
                                 è 1 - a  è 2 øø  2
                                              0
          Therefore,
                                      d
                                                     1
                                          a
                                        f ( ) =  0 when - < a <  1
                                     da
                                    d      2p
                                      f ( ) =  when a < - 1 or a > .
                                                             1
                                       a
                                   da      a
          Upon integrating both sides with respect to a, we get f(a) = C  when –1 < a < 1 and f(a) = 2p In
                                                            1
          |a| + C  when a< –1 or a> 1.
                 2
          C  may be determined by setting a= 0 in
           1
                                              p
                                                             2
                                         a
                                                  -
                                                    a
                                       f ( ) =  0 ò  ln(1 2 cos(x) a )dx
                                                           +
                                             p
                                       f (0) =  0 ò  ln(1)dx
                                             p
                                           =  0 ò  0 dx
                                            = 0
          Thus, C  = 0. Hence, f(a) = 0 when –1 < a< 1.
                1
                                                                                   a
          To  determine  C   in  the  same  manner,  we  should  need  to  substitute  in  f ( ) =
                         2
            p              2
                  a
           0 ò  ln(1 2 cos(x) + a  )dx   a  value  of  a  greater  numerically  than  1.  This  is  somewhat
                -
                                            1
                                                   -
          inconvenient. Instead, we substitute,  a =  , where 1 < b <  1. Then ,
                                           b
                                              p
                                                               -
                                       f ( ) =  0 ò  ln (1 2 cos(x)- b  + b 2 ) 2 ln|b  ) | dx
                                         a
                                            = 0 – 2p ln |b|
                                            = 2p ln |a|
          Therefore, C  = 0 and f(a) = 2p ln |a| when a<  –1 or a> 1.)
                    2
          The definition of f(a) is now complete:
                                         a
                                       f ( ) 0 when 1 < a <  1 and
                                                   -
                                           =
                                       f ( ) 2 ln| |when a < - 1 or a >  1
                                                  a
                                              p
                                         a
                                           =
                                           LOVELY PROFESSIONAL UNIVERSITY                                   281
   282   283   284   285   286   287   288   289   290   291   292