Page 288 - DMTH401_REAL ANALYSIS
P. 288

Real Analysis




                    Notes          The foregoing discussion, of  course, does  not apply when  a  =  ±1 since  the conditions  for
                                   differentiability are not  met.


                                          Example: Here, we consider the integration of
                                                                   p       1
                                                                   2
                                                                I =  0 ò  (acos x bsin x+  2  )  dx
                                                                         2
                                   where both a, b > 0, by differentiating under the integral sign.

                                                   p      1
                                                   2
                                   Let us first find  J =  ò 0 acos x bsin x+  2  dx
                                                        2
                                                                                 2
                                   Dividing both the numerator and the denominator by cos  x yields
                                                                         2
                                                                   p 2  sec x
                                                                J = ò 0 a btan x+  2  dx
                                                                   1  p    1
                                                                 =   0 ò  2       d(tanx)
                                                                   b  æ  a ö  2
                                                                                2
                                                                           +  tan x
                                                                      ç  ÷
                                                                      è  b ø
                                                                                      p 2
                                                                    1  æ   - 1  æ  b  ö ö  p
                                                                  =    ç tan  ç  tanx  ÷ ÷  =  ×
                                                                    a, b è  è  a   øø   2 a, b
                                                                                      0
                                                                                     1
                                                                              p
                                   The limits of integration being independent of a,  J =  0 ò  2  dx  gives us
                                                                                          2
                                                                                   2
                                                                                     +
                                                                               acos x bsin x
                                                                              2
                                                                 J ¶  p 2  cos xdx
                                                                  = -  0 ò
                                                                ¶ a    (acos x bsin x+  2  ) 2
                                                                           2
                                               p
                                   Whereas  J =    gives us
                                             2 ab
                                                                 J ¶    p
                                                                  = -      ×
                                                                ¶ a   4 a b
                                                                         3
                                   Equating these two relations then yields
                                                                        2
                                                                 p 2  cos x dx       p
                                                                0 ò   2      2  2  =  3
                                                                  (acos x bsin x+  )  4 a b
                                                     J ¶
                                   In a similar fashion,    pursuing yields
                                                    ¶ b
                                                                        2
                                                                 p    sin x dx       p
                                                                 2
                                                                0 ò   2      2  2  =   3
                                                                  (acos x bsin x+  )  4 ab
                                   Adding the two results then produces
                                                                   p       1             p  æ 1  1 ö
                                                                   2
                                                                I =  0 ò          2 dx =    ç  +  ÷
                                                                         2
                                                                    (acos x bsin x+  2  )  4 ab è a  b ø
                                   Which is the value of the integral I.




          282                               LOVELY PROFESSIONAL UNIVERSITY
   283   284   285   286   287   288   289   290   291   292   293