Page 349 - DMTH401_REAL ANALYSIS
P. 349

Unit 29: The Lebesgue Integral of Bounded Functions




                                                                                                Notes
                       m
                  A ò   = å  b m(B Ç  A)   (by definition of the integral)
                              j
                          j
                       j 1
                       =
                       m    æ         ö
                     = å  b m ç    E Ç A ÷  (by (1))
                          j
                                  i
                       j 1  è  {i:a i b }=  j  ø
                       =
                       m
                     = å  b j  å  m(E Ç A)  (by finite additivity of m)
                                   i
                       j 1  {i:a i b }=  j
                       =
                       m
                      = å  b j  å  a m(E Ç A)
                                i
                                    i
                       j 1  {i:a  i b }=  j
                       =
                       n
                     = å  a m(E Ç A)        (by (2))
                              i
                          i
                       =
                       i 1
          This complete our proof.
          29.2 Properties of the Lebesgue Integral
          Proposition: (Properties of the Lebesgue integral)
          Suppose   +  Î S (E).  Then for any A E,
                         0
                      )
          (a)   A ò  ( +  =  A ò  +  A ò   (Note that  +  ÎS (E) too be the vector space structure
                                                 0
          (b)   A ò a = a  for all a Î . (Note aÎS (E) again.)
                       A ò
                                               0

          (c)  If a  a.e. on A then  ò    A ò  .
                                   A
          (d)  If  =    a.e. on A then  ò  =  A ò  .
                                   A
                                     0
          (e)  If  0 a.e. on A and  ò  = , then  = 0 a.e. on A.
                                 A
          (f)   A ò    A ò  | |.(Note| | So (E) too.Why?)
                                Î
                              
                      
          Remark: (a) and (b) are known as the linearity property of the integral, while (c) is known as the
          monotonicity property. Furthermore, Lemma is now seen to hold by the linearity of the integral
          even without the disjointness assumption on the E ’s.
                                                   i
          Proof:
          (a)  Let  = å n i 1 a   and    =  å m j 1 b   be canonical representations of  and    respectively.
                                         j
                                           Bj
                       =
                                       =
                         i
                           Ai
                                   j 1 
               Then noting that    A i  =  å m =  i A Ç for all i and    =  å  n i 1  A i Ç  j B
                                         j B
                                                          =
                                                      j B
                     n      n m
                   =  å  a  A  =  å å  a   A i Ç  j B
                       i
                                i
                     i 1  i  i 1 j 1
                              =
                     =
                            =
                     m       n m
                   =  å  b  =  å å b  A i BÇ
                        j
                                 j
                          j B
                               =
                     =
                     j 1     i 1 j 1  j
                             =
               Consequently
                              n m
                        +  =  å å  (a +  b ) A i Ç  j B  .
                                      j
                                  i
                               =
                             =
                             i 1 j 1
                                           LOVELY PROFESSIONAL UNIVERSITY                                   343
   344   345   346   347   348   349   350   351   352   353   354