Page 383 - DMTH401_REAL ANALYSIS
P. 383

Unit 32: The General Lebesgue Integral and Convergence in Measure




          Theorem 1: Let f and g are integrable over E. Then                                    Notes
          (i)  The function cf is integrable over E, and  cf =  c f.
                                                E ò
                                                      E ò
          (ii)  The function f + g is integrable over E, and  f g+ =  E ò  f +  E ò  g .
                                                   E ò
          (iii)  If f g a.e., then  f ò E g
                            E ò
          (iv)  If A and B are disjoint measurable sets contained in E, then  ò  f =  A ò  f +  B ò  f
                                                                È
                                                                A B
          Proof:
          (i)  Since f is integrable over E, both f  and f  are integrable over E and the integral of f is given
                                         +
                                              –
               by
                                                 +
                                           E ò  f =  E ò  f -  E ò  f  -
               Hence,
                           –
                    +
                                                               –
               both cf  and cf  are integrable over E, and hence, cf = cf  – cf  are integrable over E and
                                                           +
                                                 +
                                          E ò  cf =  E ò  cf -  E ò  cf  -
                                                 +
                                            =  c f -  c f  -
                                               E ò
                                                     E ò
                                                      -
                                                 +
                                            =  c[ f -  E ò  f ]
                                                E ò
                                            =  c f.
                                               E ò
               Hence (i) is proved.
          (ii)  Suppose if f  and f  are nonnegative integrable functions with f = f  – f ,
                         1    2                                     1  2
               Then f  – f  = f  – f .
                    +
                       –
                          1  2
               Hence,
                          +
                          f  + f  = f  + f .
                                –
                             2     1
               As you know
                         f  + f  = f  – f .
                         +
                                –
                            2      1
               Therefore,
                            +
                         f = f  – f –
                         = f  – f .
                           1  2
               Since f and g are measurable,
                           –
                              +
                         f , f , g , g  are measurable.
                         +
                                 –
               Hence,
                         f  + g , f  + g  are also measurable.
                         +
                               –
                             +
                                   –
                                           –
               And       f + g =  (f  + g ) – (f  + g ).
                                   +
                                +
                                        –
               Hence by(1),
                                         –
                                            –
                                     +
                                 +
                         (f + g ) = (f  + g ) – (f  + g )
                                           LOVELY PROFESSIONAL UNIVERSITY                                   377
   378   379   380   381   382   383   384   385   386   387   388