Page 384 - DMTH401_REAL ANALYSIS
P. 384

Real Analysis




                    Notes                 = f  + g  – f  – g –
                                                   –
                                                +
                                            +
                                                    +
                                                –
                                          = (f  – f ) + (g  – g )
                                             +
                                                        –
                                          = f + g.
                                       Hence (ii) is proved.
                                                      –
                                                           –
                                   (iii)  Since f g a.e., f  - f  g  – g  a.e.,
                                                        +
                                                   +
                                                           –
                                                  +
                                                        +
                                       Hence,    f + g – g  + f  a.e,
                                                  +
                                                 (f  + g ) (g  + f ).
                                                            –
                                                      –
                                                         +
                                       Hence
                                                 f + g – g  + f .
                                                        +
                                                           –
                                                  +
                                       Hence,
                                                 f  – f – g – g –
                                                  +
                                                        +
                                       Hence,
                                                 f g.
                                       Hence (iii) is proved.
                                   (iv)  Consider
                                                 ò A B f =  f ò ×c  A B
                                                   È
                                                           È
                                                     =  ò  f (c + c B )
                                                         ×
                                                           A
                                                     =  f ò ×c +  f ò ×c
                                                          A      B
                                                     =  A ò  f +  B ò  f
                                   32.2 Lebesgue Convergence Theorem
                                   Theorem 2: Let g be integrable over E and let {f } be a sequence of measurable functions such that
                                                                       n
                                   |f |g on E and for almost all x in E we have f(x) = lim fn(x). Then
                                    n
                                                                    E ò  f =  lim f n
                                                                           E ò
                                   Proof: Since |f |g on E, g – f  is nonnegative and hence by Fatou’s Lemma,
                                              n          n
                                                            -
                                                   -
                                                E ò  (g f)lim (g f )                                       ...(1)
                                                         E ò
                                                             n
                                   Since f(x) = lim f (x) a.e. on E and
                                                n
                                          |f |g on E,
                                           n
                                          |f|g on E.
                                   Hence since g is integrable,
                                   f is also integrable.
                                                   -
                                                E ò  (g f) =  E ò  g -  E ò  f                             ...(2)
                                   Also,
                                               lim (g f )  E ò =  g lim f n                                ...(3)
                                                      -
                                                             -
                                                   E ò
                                                                  E ò
                                                        n
          378                               LOVELY PROFESSIONAL UNIVERSITY
   379   380   381   382   383   384   385   386   387   388   389