Page 76 - DMTH401_REAL ANALYSIS
P. 76

Real Analysis




                    Notes          4.7 Sequential Compactness

                                   Theorem: Metric M is compact if f every sequence in M has convergent subsequence.

                                   Lemma: A  sequence of subsets of metric M. Then  " x    ¥ j 1 A  x  A  s.t. x   x.
                                           k                                      =  j  k   k    k
                                   Proof: Take x   A   B (x,  1 )  .
                                             k   k      k
                                   Corollary: x   M and   ¥ j 1 {x , x ...}.  then x  have convergent
                                                             +
                                            k          =  j  j 1         k
                                   Proof: Let x    ¥ j 1 {x , x ...}.  As  k  j s.t. x   x. k ¥ so can choose subsequence k  s.t. k  >
                                               =
                                                  j
                                                     j 1
                                                     +
                                                                                                            ji+1
                                                                                                       ji
                                                                            j
                                                               j
                                                                     kj
                                   k  (as ks not necessarily in order). Then x  subsequence converging to x.
                                    ji   j                          kji
                                   Proof of () of theorem 3.16. Let x   M, F =  {x , x ...}.  F form decreasing sequence of non-
                                                                             +
                                                               k      j   j  j 1   j
                                   empty closed subsets of M.
                                   By corollary 3.6    ¥ j 1 F    so x  have convergent subsequence by corollary 3.18.
                                                    j
                                                  =
                                                           k
                                   Notation
                                   U open cover of M.  " x M
                                            r(x) = sup {r  1 :  U  U s.t. B(x, r) C U}
                                                             æ   r(x)ö
                                   Lemma: If y   x  K s.t. y   B y ,   for k  K.
                                            k           k+1  ç  k   ÷
                                                             è    2 ø
                                                                                      r(x)
                                                       B
                                   Proof: Let U U be s.t.  ( x,  r(x) )   U. Take K s.t. d(y ,  x) <    for k  K. Then k   K 
                                                           2                    k     16
                                    æ   r(x)       ö    æ  r(x)ö            r(x)          r(x)
                                   B y ,  2  -  d(x, y )  B x,  2 ø ÷    U, so r(y )    2   – d(x, y )    4  , so
                                    ç
                                                  k ÷
                                                        ç
                                                                                      k
                                                                        k
                                      k
                                                   ø
                                                        è
                                    è
                                                                  r(x)  r(y )
                                       d(y , y )  d(y , x) + d(y , x) <      k
                                          k+1  k    k+1      k     8     2
                                                                            s 1                æ   r(x )
                                   M  : = M, s  : = sup   r(x). Find x M  s.t. r(x ) >   ,  choose U  U s.t.  B x ,  1 ö  U .
                                    1      1      xM1        1   1     1   2         1        ç è  1  2 ø ÷  1
                                   If x , ...., x  have been defined,
                                     1    j
                                                                            j ö
                                                           j ö
                                                     æ   r(x )      j  æ  r(x )
                                           M : = M\ B x ,      =  M \   B x ,
                                             j+1     ç è  j  2 ø ÷  i 1 è ç  j  2 ø ÷
                                                                    =
                                                       æ
                                                             i ö
                                                                  j
                                   If M  =  then  M    j i 1 B x ,  r(x )   i 1 U has finite subcover.
                                      j+1            =  ç  i  ÷    =  i
                                                       è    2 ø
                                                                          s                   æ    r(x j 1 ö
                                                                                                       )
                                                                            +
                                   If M   let s  = sup  {r(x)}, find x  s.t. r(x ) >   j 1  , choose U   U s.t. B x  ,  +    U .
                                                                                                             +
                                                                                                 +
                                      j+1    j+1   xMJ+1       j+1   j+1  2         j+1      ç è  j 1  2  ÷ ø  j 1
                                   If procedure stops we have finite subcover. If it runs forever we have infinite sequence x s.t. x  
                                                                                                         j   i
          70                                LOVELY PROFESSIONAL UNIVERSITY
   71   72   73   74   75   76   77   78   79   80   81