Page 81 - DMTH401_REAL ANALYSIS
P. 81

Unit 5: Connectedness




          Proposition: If C, C j  (j Î J) connected subspaces of topological T and if c j   C    "  j ÎJ then  Notes
                     K = C    C  j
                            j J
                             Î
          is connected.
          Proof: Suppose K disconnected. Hence  U, V  T open that separate K.
          C connected so cannot be separated by U,V, so does not meet one of them. Suppose w.l.o.g C 
          V = . Then C  U. Since V open  C  V = , so K   C  U. Then C  U   " j.
                                                               j
          C connected so C  U or C  V. C  U  so C  U.
           j            j       j     j          j
          Then K  U contradicting V  K .

          Corollary: C  T connected and C  K   C . Then K connected.
          Proof: K =  C   {x} and {x}   C   " x.
                      Î
                      x K
          Proposition: Product of connected spaces is connected.

          Proof: Let T, S connected, so Î S. Define C = T  {s } and C  = {t}  S (for some t Î T). Then C, C
                                                  0      t                            t
          homeomorphic to T and S are connected. C   C  and T S = C  t T  C  connected.
                                             t                     Î   t
                            æ 1ö        2
                                         Î
                                           -
                 Example:  Sin ç ÷   {(0 , t) Î  : ( 1, 1)}  is connected.
                                 
                             t è ø
                                        I
          Proof:
                         æ    æ  1 ö ö  ü
                                     >
                     C = ç  t, sin ç ÷ ÷  : t 0 ý
                          è    t è ø ø  þ
                         æ    æ  1 ö ö  ü
                                     <
                     D = ç  t, sin ç ÷ ÷  : t 0 ý
                          è    t è ø ø  þ
          C, D, I cts images of intervals so connected.

                                æ  1 ö              1
          (0, 0) Î I is in  C  as (t ) sin     (0, 0) when t  =   . Then I C connected. Similarly I  D.
                           k    ç  ÷            k
                                 t è  k ø           kp

          5.4 Connected Components

          Definition: x  y if x, y belong to a common connected subspace of T. Equivalence classes are
          connected components of T.

          Are maximal connected subsets of T. Number of connected components is topological invariant.
          Property T\{x} connected  " x ÎT topological invariant.

          5.5 Path Connectedness


          Definition: a, b Î T. : [0, 1]  T cts with (0) = a, (1) = b called a path from a to b.
          Definition: T path connected if any two points can be joined by a path.




                                           LOVELY PROFESSIONAL UNIVERSITY                                   75
   76   77   78   79   80   81   82   83   84   85   86