Page 81 - DMTH401_REAL ANALYSIS
P. 81
Unit 5: Connectedness
Proposition: If C, C j (j Î J) connected subspaces of topological T and if c j C " j ÎJ then Notes
K = C C j
j J
Î
is connected.
Proof: Suppose K disconnected. Hence U, V T open that separate K.
C connected so cannot be separated by U,V, so does not meet one of them. Suppose w.l.o.g C
V = . Then C U. Since V open C V = , so K C U. Then C U " j.
j
C connected so C U or C V. C U so C U.
j j j j j
Then K U contradicting V K .
Corollary: C T connected and C K C . Then K connected.
Proof: K = C {x} and {x} C " x.
Î
x K
Proposition: Product of connected spaces is connected.
Proof: Let T, S connected, so Î S. Define C = T {s } and C = {t} S (for some t Î T). Then C, C
0 t t
homeomorphic to T and S are connected. C C and T S = C t T C connected.
t Î t
æ 1ö 2
Î
-
Example: Sin ç ÷ {(0 , t) Î : ( 1, 1)} is connected.
t è ø
I
Proof:
æ æ 1 ö ö ü
>
C = ç t, sin ç ÷ ÷ : t 0 ý
è t è ø ø þ
æ æ 1 ö ö ü
<
D = ç t, sin ç ÷ ÷ : t 0 ý
è t è ø ø þ
C, D, I cts images of intervals so connected.
æ 1 ö 1
(0, 0) Î I is in C as (t ) sin (0, 0) when t = . Then I C connected. Similarly I D.
k ç ÷ k
t è k ø kp
5.4 Connected Components
Definition: x y if x, y belong to a common connected subspace of T. Equivalence classes are
connected components of T.
Are maximal connected subsets of T. Number of connected components is topological invariant.
Property T\{x} connected " x ÎT topological invariant.
5.5 Path Connectedness
Definition: a, b Î T. : [0, 1] T cts with (0) = a, (1) = b called a path from a to b.
Definition: T path connected if any two points can be joined by a path.
LOVELY PROFESSIONAL UNIVERSITY 75