Page 86 - DMTH401_REAL ANALYSIS
P. 86
Real Analysis
Notes Proof:
ì ì n , 1 ü x 0
>
ý
f (x) = ï í min í x þ
n î
ï n x = 0
î
so (f ) C[0, 1].
n
1 1 1 n æ 1 ö
-
0 ò |f (x) f (x)|dx = ( m - n ) dx + m è x - n dx
m
0 ò
1 ç ò
m
n
÷
ø
1 2
+
m n
3
¾¾¾ 0
n n
so (f ) Cauchy.
n
Let f C[0, 1]. Find k s.t. |f| k. Then for n > k
1 1 n æ 1 ö
1
0 ò |f (x) f (x)|dx = ( m - n ) dx + 1 ç ò m è x - n dx
m
-
0 ò
÷
m
n
ø
æ 1 1 ö 1
2 ç è k - n ø ÷ - k
1 2
= - ¾¾¾ > 0
n
k n
6.3 Completion
Definition: S M is dense in M if S = M.
Definition: A completion of metric space M is:
Complete metric space N s.t. M dense subset of N.
Complete metric space N and isometry i: M A N s.t i(M) is dense in N.
Theorem: Any metric M can be isometrically embedded into complete metric space.
Proof: Find isometry of M onto subset of B(M), complete. Fix a M, define F : M B(M) by F(x)(z)
= d(z,x) – d(z, a). |F(x)(z)| d(x, a) so F(x) B(M).
|F(x)(z) - F(y)(z)| = |d(z, x) – d(z, y)|
d(x, y)
Equality occurs when z = y. Then ||F(x) – F(y)|| = d(x, y) so F isometry.
Corollary: Any metric space M has a completion.
Proof: Embet M into complete N. Then M (closure taken in N) is complete by 6.2, M dense in M .
Then M completion of M.
80 LOVELY PROFESSIONAL UNIVERSITY