Page 86 - DMTH401_REAL ANALYSIS
P. 86

Real Analysis




                    Notes          Proof:

                                                 ì    ì  n ,  1 ü  x 0
                                                               >
                                                            ý
                                            f (x) =  ï í min í  x þ
                                            n         î
                                                 ï      n     x =  0
                                                 î
                                   so       (f )  C[0, 1].
                                              n
                                    1                1             1 n æ  1  ö
                                         -
                                    0 ò  |f (x) f (x)|dx  =  ( m -  n  ) dx +  m è  x  -  n dx
                                                     m
                                                    0 ò
                                                                   1 ç ò
                                      m
                                           n
                                                                            ÷
                                                                            ø
                                                   1   2
                                                    +
                                                   m    n
                                                  3
                                                   ¾¾¾   0
                                                   n  n
                                   so (f ) Cauchy.
                                      n
                                   Let f  C[0, 1]. Find k  s.t. |f|  k. Then for n > k
                                    1                1              n æ  1  ö
                                                                    1
                                    0 ò  |f (x) f (x)|dx  =  ( m -  n ) dx +  1 ç ò m è  x  -  n dx
                                                     m
                                         -
                                                     0 ò
                                                                            ÷
                                      m
                                           n
                                                                            ø
                                                  æ  1   1 ö  1
                                                 2 ç è  k  -  n ø ÷  -  k
                                                  1    2
                                                =   -    ¾¾¾ >  0
                                                           n
                                                   k   n
                                   6.3 Completion
                                   Definition: S  M is dense in M if  S  = M.
                                   Definition: A completion of metric space M is:

                                      Complete metric space N s.t. M dense subset of N.
                                      Complete metric space N and isometry i: M  A  N s.t i(M) is dense in N.
                                   Theorem: Any metric M can be isometrically embedded into complete metric space.

                                   Proof: Find isometry of M onto subset of B(M), complete. Fix a  M, define F : M  B(M) by F(x)(z)
                                   = d(z,x) – d(z, a). |F(x)(z)|  d(x, a) so F(x)  B(M).

                                         |F(x)(z) - F(y)(z)| = |d(z, x) – d(z, y)|
                                                 d(x, y)

                                   Equality occurs when z = y. Then ||F(x) – F(y)|| = d(x, y) so F isometry.
                                   Corollary: Any metric space M has a completion.

                                   Proof: Embet M into complete N. Then M  (closure taken in N) is complete by 6.2, M dense in  M .
                                   Then  M  completion of M.





          80                                LOVELY PROFESSIONAL UNIVERSITY
   81   82   83   84   85   86   87   88   89   90   91