Page 132 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 132

Unit 12: Fundamental Theorem of Algebra




          Hence the result.                                                                     Notes
          Deduction. (i) Replacing m by a and a by 1 in the above example, we get


                           cosax      a
                          0   x  1  dx   2 e
                            2
               Putting a = 1, we get

                            cosx     1  
                          0   x  1    2  e   2e
                            2
          (ii)  Taking m = 1, a = 2, we get

                            cosx    
                          0   x  4  dx   4e 2
                            2
                                     3
                 Example: Prove that        x sinmx     e  ma / 2  cos     ma   m > 0, a > 0
                                         a
                                             2
                                          4
                                      4
                                                         2 
                                     x 
          Solution. Consider the integral  f(z) dz, where
                                    
                                    C
                               z e
                                3 imz
                         f(z) =
                               4
                              z  a 4
          and C is the closed contour….
                 z 3
          Since      0 as |z| = R, so by
                4
               z  a 4
          Jordan lemma,
                     3 imz
                lim  z e  dz  = 0                                                   (2)
                     4 
                R  z  a 4
                   T
          Poles of f(z) are given by
               z  + a  = 0
             4
                 4
          or             z  = –a  = e 2ni  e  a 4
                                    i
                              4
                         4
          or             z = a e (2n+1)i/4 , n = 0, 1, 2, 3.
          Out of these four simple poles, only
                         z = ae i/4 , a e i3/4  lie within C.

          If f(z) =    (z) ,  then Res (z = ) =  lim   (z)  , a being simple pole.
                  (z)               z  '(z)

                        For the present case,
                                      z e       e imz
                                       3 imz
                         Res (z = ) =  lim   lim  .
                                   z  4z 3  z  4
          Thus,          Res (z = ae i/4 ) + Res (z = a e iz/4 )





                                           LOVELY PROFESSIONAL UNIVERSITY                                  125
   127   128   129   130   131   132   133   134   135   136   137