Page 128 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 128

Unit 12: Fundamental Theorem of Algebra




          Poles of f(z) are z = 1 (order four) and z = 2, 3 (simple)                            Notes
          Therefore,

                                                       z 3
                         Res (z = 2) =  lim (z–2) f(z) =  lim  = –8
                                   z 2         z 2 (z 1) (z 3)  4  

                                                27
                         Res (z = 3) =  lim (z - 3) f(z) =
                                   z 3         16

                                  z 3
          For z = 1, we take (z) =
                              (z 2)(z 3)
                                     
                                
          where             f(z) =    (z)   and thus, Res (z = 1) =    3 (1)
                           (z 1) 4                   | 3
                             

                                     8    27
                    Now, f(z) = z + 5 –   
                                    z 2  z 3
                                           
                                     
                                48     162
                          (z) =    
                         3
                              (z 2) 4  (z 3) 4
                                
                                        
                              303
                          (1) =
                         3
                               8
          Thus,
                    Res (z = 1) =  303    101
                              8 3   16
                               |
          Theorem. (Cauchy Residue Theorem)
          Let f(z) be one-valued and analytic inside and on a simple closed contour C, except for a finite
          number of poles within C. Then

                       f(z) dz  = 2i [Sum of residues of f(z) at its poles within C]
                      C
          Proof. Let a , a ,…., a  be the poles of f(z) inside C. Draw a set of circles g  of radii  and centre a r
                                                                   r
                           n
                   1
                      2
          (r = 1, 2,…, n) which do not overlap and all lie within C.  Then, f(z) is regular in the domain
          bounded externally by C and internally by the circles g .
                                                       r

                                         a 1    1      a 5
                                                          5


                                 2        a 2       a 3      a 4    4    C
                                                    3








                                           LOVELY PROFESSIONAL UNIVERSITY                                  121
   123   124   125   126   127   128   129   130   131   132   133