Page 126 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 126

Unit 12: Fundamental Theorem of Algebra




          (iii)  If f(z) has a pole of order m at z = a then we can write                       Notes

                                 (z)
                         f(z) =                                                     (1)
                              (z a) m
                                
               where (z) is analytic and (a)  0.

                                   1           1     (z)
               Now, Res (z = a) = b  =   f(z) dz  =     dz
                                                 
                               1  2 i  C     2 i (z a) m
                                   
                                                    
                                               
                                                 C
                                1  | m 1      (z)
                                      
                            =                 m 1 1  dz
                              | m 1 2 i  C (z a)    
                                 
                                      
                                            
                                1
                            =        (a)    [By Cauchy’s integral formula for derivatives]    (2)
                                     m-1
                                 
                              | m 1
               Using (1), formula (2) take the form
                                1   d m 1
                                      
                    Res (z = a) =        [(z–a)  f(z)] as z  a
                                             m
                                       
                              | m 1 dz m 1
                                 
                                         
                      i.e.  Res (z = a) = lim  1  d m 1  [(z-a)  f(z)]              (3)
                                                m
                                          
                                 |
                              z a m 1 dz  m 1
                 Thus, for a pole of order m, we can use either formula (2) or (3).
          (iv)  If z = a is a pole of any order for f(z), then the residue of f(z) at z = a is the co-efficient of
                 1
               z a   in Laurent’s expansion of f(z)
                 
                                                 1
          (v)  Res (z = ) = Negative of the co-efficient of    in the expansion of f(z) in the neighbourhood
                                                 z
               of z = .
                                             z 4
                 Example: (a) Find the residue of    at z = –ia
                                            2
                                           z  a 2
                            z 4
          Solution. Let f(z) =   .
                           2
                          z  a 2
          Poles of f(z) are z = ± ia
          Thus z = –ia is a simple pole, so

                     Res (z = –ia) =  lim (z + ia) f(z)
                                  z ia
                                              z 4
                                     = lim (z ia)
                                      
                                                 
                                            
                                 z ia   (z ia)(z ia)







                                           LOVELY PROFESSIONAL UNIVERSITY                                  119
   121   122   123   124   125   126   127   128   129   130   131