Page 127 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 127
Complex Analysis and Differential Geometry
Notes
z 4
or (z)
4
4
= lim z a z ia
4
z ia z ia 2ia z /(z ia)
as f(z)
(z ia)
a i ia 3
4
=
2a 2
(b) Find the residues of e z at its poles.
iz
-4
e iz
Solution. Let f(z) =
z 4
f(z) has pole of order 4 at z = 0, so
iz
Res (z = 0) = 1 d 3 3 (e ) i | (z) = e iz
3 dz
| z 0 6
Alternatively, by the Laurents expansion
e iz 1 i 1 i ...
z 4 z 4 z 3 | 2z 2 | 3z
we find that
1
Res (z = 0) = co-efficient of
z
i
=
6
z 3
(c) Find the residue of at z = .
2
z 1
Solution. Let f(z) = z 3 z 3 z 1 1 1
2
2
z 1 2 1 z
z 1 2
z
1 1
= z(1 ....)
z 2 z 4
1 1
= z ...
z z 3
Therefore,
1
Res (z = ) = (co-efficient of ) 1
z
(d) Find the residues of at its poles.
z 3
Solution. Let f(z) =
(z 1) (z 2)(z 3)
4
120 LOVELY PROFESSIONAL UNIVERSITY