Page 190 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 190

Unit 16: Tensor Fields Differentiation of Tensors




          (r + s + 1)-dimensional array with one extra dimension due to index q. We write it as a lower  Notes

                                                                X  1 i ...i r
          index in  Y qj 1 i ...i r s  due to the following theorem concerning  Y qj 1 i ...i r s     x 1 j ...j s  .
                                                           1 ...j
                                                                  q
                    1 ...j
          Divergency is the second  differential operation  of vector  analysis. Usually it is applied to  a
          vector field and is given by formula:
                                               3
                                        div X    i X . i
                                              i 1
                                               
          16.7 Self Assessment

                                                                          
          1.   .................... in space and hence can represent P by its radius-vector  r  OP  and by its
                                                                        p
               coordinates x , x , x :
                          1
                            2
                               3
                                     X  1 i ...i r s    X  1 i ...i r s (x ,x ,x ).
                                                   2
                                                     3
                                                1
                                       1 j ...j
                                            1 j ...j
          2.   A  ....................  X  1 i ...i r    X  1 i ...i r (x ,x ,x )  is  a coordinate  representation of  a tensor  field
                                       1
                                          2
                                            3
                              1 j ...j
                                   1 j ...j
               X = X(P).       s     s
                                                3
                                                           2
                                                              3
                                         1
                                              2
                                                         1
                          X  1 i ...i r  X  1 i ...i r  (x  h,x ,x ) X  1 i ...i r (x ,x ,x )
                                                  
          3.   ....................   1 j ...j s   lim  1 j ...j s  1 j ...j s  ,  taken as a whole, form an
                            t   h 0           h
               (r + s + 1)-dimensional array with one extra dimension due to index q. We write it as a
                                                                           1 j ...j
               lower index in  Y qj 1 i ...i  r s   due to the following theorem concerning  Y qj 1 i ...i r s     X x 1 i ...i r s  .
                                                                     1 ...j
                                                                            q
                              1 ...j
                                                                          
          16.8 Review Questions
                                3       3             3
          1.   Using  r   OO r  ,  a   OO   a e i ,  r   x e ,  and  e   S e   derive  the  following
                                          i
                                                                  j
                          
                                               P 
                                    
                                                             i 
                                                    i
                                              
                                                            
                                                     
                           
                                                      i
                             P
                     P
                                                                    j
                                                                  i
                                       i 1       i 1           j 1
                                        
                                                                
                                                  
               formula relating the coordinates of the point P in the two coordinate systems.
                                               3
                                                  i
                                         i
                                            i
                                        x   a   S x .  j
                                                  j
                                               j 1
                                               
                              3             3
                                         j
                        i
                           i
                                  j
                                 i
                                               j
                                                i
               Compare  x   a   S x   with  x   S x .   Explain the differences in these two formulas.
                                 j
                                               i
                              j 1           i 1
                                            
                              
                                                                                 X i1...ir
                                                                                  j1...js
          2.   Give  a  more  detailed  explanation  of  why  the  time  derivative   =
                                                                                   t 
                  X  1 i ...i r (t h,x ,x ,x ) X  1 i ...i r (t,x ,x ,x )
                                                3
                                             2
                                           1
                                 3
                            1
                               2
                        
                                   
               lim  1 j ...j s        1 j ...j s   represents a tensor of type (r, s)
               h 0              h
                                           LOVELY PROFESSIONAL UNIVERSITY                                  183
   185   186   187   188   189   190   191   192   193   194   195