Page 192 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 192

Unit 16: Tensor Fields Differentiation of Tensors





                                                                           3  3                 Notes
          5.   Show that in case of orthonormal coordinates, when g  =  d  , formula     g    for
                                                                               ij
                                                          ij
                                                              ij
                                                                                 i
                                                                                   j
                                                                          i 1 j 1
                                                                             
                                                                          
                                                                    2      2      2
                                                                            
               the Laplace operator 4 reduces to the standard formula       1       2      3   .
                                                                  x      x      x 
               The coordinates of the vector rot  X in a skew-angular coordinate system  are given  by
                               3  3  3
                                     ri
                                            k
               formula  (rot X)r    g   j X . Then for vector rot X itself we have the expansion:
                                       ijk
                              i 1 j 1 k 1
                              
                                 
                                   
                                             3
                                                   r
                                      rot X   (rot X) e .
                                                     r
                                            r 1
                                            
                                3  3  3                  3
                                       ri
                                                                r
                                             k
          6.   Substitute (rot X)r   g   j X  into  rot X   (rot X) e  and show that in the case
                                         ijk
                                                                 r
                                i 1 j 1 k 1             r 1
                                                         
                                
                                  
                                    
                                                                    3
                                                                           r
               of a orthonormal coordinate system the resulting formula  rot X   (rot X) e  reduces to
                                                                             r
                                                                    r 1
                                                                    
                        e 1  e 2  e 3
               rot X  det   1   2   3  .
                         x   x   x 
                        X 1  X 2  X 3
          Answers: Self  Assessment
          1.   Cartesian coordinate system        2.  functional array
          3.   Partial derivatives
          16.9 Further Readings
           Books      Ahelfors, D.V. : Complex Analysis
                      Conway, J.B. : Function of one complex variable
                      Pati, T. : Functions of complex variable
                      Shanti Narain : Theory of function of a complex Variable
                      Tichmarsh, E.C. : The theory of functions
                      H.S. Kasana : Complex Variables theory and applications
                      P.K. Banerji : Complex Analysis
                      Serge Lang : Complex Analysis
                      H. Lass : Vector & Tensor Analysis
                      Shanti Narayan : Tensor Analysis

                      C.E. Weatherburn : Differential Geometry
                      T.J. Wilemore : Introduction to Differential Geometry
                      Bansi Lal : Differential Geometry.



                                           LOVELY PROFESSIONAL UNIVERSITY                                  185
   187   188   189   190   191   192   193   194   195   196   197