Page 191 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 191

Complex Analysis and Differential Geometry




                    Notes                              X i1...ir  X  1 i ...i r (t h,x ,x ,x ) X  1 i ...i r (t,x ,x ,x )
                                                                         1
                                                                                          2
                                                                                             3
                                                                              3
                                                                            2
                                                                                        1
                                                                     
                                                                                
                                   3.  Prove  theorem   j1...js   lim  1 j ...j s  1 j ...j s  .   For  this  purpose
                                                        t   h 0             h
                                       consider  another  Cartesian  coordinate  system  x , x , x    related  to  x ,  x ,  x   via
                                                                                   1
                                                                                      2
                                                                                         3
                                                                                                           3
                                                                                                        2
                                                                                                     1
                                                                                  
                                                                                     
                                                                                 2
                                                                                     1
                                                                            1
                                                                           1
                                                                                          1
                                                                       1
                                                                                       3
                                                                                1
                                                  1
                                                    2
                                                            1
                                                         3
                                                       1
                                             1
                                               1
                                          1
                                         x   S x   S x  S x  a ,   x   T x   T x   T x   a ,
                                                        
                                              
                                                   
                                                                                     3
                                                                          1
                                                                                2
                                                       3
                                             1
                                                  2
                                          2  2    2  2  2  3  2       2  2  1  2  2  2  3  a , .  Then  in  the  new
                                                                                          2
                                                
                                                                      
                                                        
                                              
                                                   
                                         x   S x1 S x   S x   a ,   and   x   T x   T x   T x  
                                                                                     3
                                                                                2
                                                  2
                                                                          1
                                             1
                                                        3
                                          3  3  1  3  2  3  3  a .   x   T x   T x   T x   a .
                                                                       3
                                                                           3
                                                                                       3
                                                                            1
                                                                                          3
                                                                                     3
                                                                                 2
                                                                                3
                                                            3
                                                                      
                                                        
                                                   
                                              
                                         x   S x   S x   S x        1     2    3
                                                  2
                                                       3
                                             1
                                       coordinate system consider the partial derivatives
                                                                        
                                                                        X  1 i ...i  r
                                                                 Y qj 1 i ...i r s     x 1 j ...j s
                                                                 
                                                                          q
                                                                   1 ...j
                                                                          X   1 i ...i r   X  1 i ...i r
                                       and derive relationships binding  Y  qj 1 i ...i  r s     x 1 j ...j s   and  Y qj 1 i ...i  r s     x 1 j ...j s  .
                                                                                     1 ...j
                                                                                            q
                                                                     1 ...j
                                                                            q
                                                       3  3  3
                                                                    k
                                                              ri
                                   4.  Formula (rot X)r   g   j X  can be generalized for the case when X is an arbitrary
                                                                ijk
                                                       i 1 j 1 k 1
                                                       
                                                            
                                                         
                                                                                                     3
                                       tensor field with at least one upper index. By analogy with  (div X) ...............   s X ........s........ .
                                                                                              ...............
                                                                                                   
                                                                                                         ..................
                                                                                                    s 1
                                                                                                     
                                       suggest your version of such a generalization.
                                                            3  3                   3  3  3
                                                                                                k
                                                                                          ri
                                                                 ij
                                       Note that  formulas      g     and  (rot X)r    g   j X   for the  Laplace
                                                                     j
                                                                                            ijk
                                                                   i
                                                            i 1 j 1               i 1 j 1 k 1
                                                                                     
                                                                                       
                                                                                   
                                                            
                                                              
                                       operator and  for the rotor are different from those that  are commonly used. Here are
                                       standard formulas:
                                                                  2      2       2
                                                                           
                                                                1       2       3   ,
                                                                 x      x     x 
                                                                    e 1  e 2  e 3
                                                           rot X  det        .
                                                                     x   1  x   2  x   3
                                                                    X 1  X 2  X 3
                                                                 3  3                  3  3  3
                                                                      ij
                                                                                              ri
                                                                                                    k
                                       The truth is that formulas     g    and  (rot X)r   g   j X  are written
                                                                         j
                                                                                                ijk
                                                                        i
                                                                i 1 j 1                i 1 j 1 k 1
                                                                   
                                                                                         
                                                                                           
                                                                 
                                                                                       
                                       for a general skew-angular coordinate system with a SAB as a basis. The standard formulas
                                                 e 1  e 2  e 3
                                        rot X  det         are valid only for orthonormal  coordinates with ONB as a
                                                  x   1  x   2  x   3
                                                 X 1  X 2  X 3
                                       basis.
          184                               LOVELY PROFESSIONAL UNIVERSITY
   186   187   188   189   190   191   192   193   194   195   196