Page 31 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 31

Complex Analysis and Differential Geometry




                    Notes          So, suppose z = x + 0i = x. Then,
                                                                e  = cos x + i sin x, and
                                                                ix
                                                                 e  = cos x – i sin x.
                                                                  –ix
                                   Thus,

                                                                         ix
                                                                        e  + e –ix
                                                                  cos x =      ,
                                                                           2
                                                                        e  – e –ix
                                                                         ix
                                                                  sin x =
                                                                           2i
                                   Next, observe that the sine and cosine functions are entire–they are simply linear combinations
                                   of the entire functions e  and e . Moreover, we see that
                                                      iz
                                                            –iz
                                                           d      cosz,and  d      sinz,
                                                           dz sinz       dz  cosz  

                                   just as we would hope.
                                   It may not have been clear to you back in elementary calculus what the so-called hyperbolic sine
                                   and cosine functions had to do with the ordinary sine and cosine functions.

                                   Now perhaps it will be evident. Recall that for real t,
                                                                                   t
                                                                  t
                                                                 e  e  t        e  e  t 
                                                          sin ht     , and cos h t 
                                                                   2                2
                                   Thus,
                                                                 e i(it)   e  i(it)  e – e  t 
                                                                            t
                                                          sin (it)              isin h t
                                                                    2i       2
                                   Similarly,

                                                                  cos (it) = cos ht.
                                   Most of the identities you learned in the 3rd grade for the real sine and cosine functions are also
                                   valid in the general complex case. Let’s look at some.

                                                       1
                                                           iz
                                           sin z + cos z =   (e  e  iz 2  (e  e  iz 2 
                                                                     iz
                                             2
                                                                           ) 
                                                                 ) 
                                                   2
                                                        
                                                       4
                                                       1   2iz     iz  2iz  2iz    iz  2iz
                                                                                iz 
                                                                iz 
                                                     =  4   e   2e e   e    e   2e e   e    
                                                        
                                                       1
                                                     =  (2  2) 1
                                                             
                                                       4
                                   It is also relative straight-forward and easy to show that:
                                                        sin(z ± w) = sin z cos w ± cos z sin w, and
                                                          cos(z ± w) = cos z cos w    sin z sin w





          24                                LOVELY PROFESSIONAL UNIVERSITY
   26   27   28   29   30   31   32   33   34   35   36