Page 339 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 339

Complex Analysis and Differential Geometry




                    Notes          6.  Let  X : U    be a parametric surface, and let V  U be open. Let N : U    be the Gauss
                                                                                                   2
                                                  3
                                       map of X, then .................
                                   7.  ................. Let X be a minimal surface which is a graph over an entire plane. Then X is a
                                       plane.

                                   26.9 Review Questions


                                   1.  Prove that setting      1, g     1/  in the Weierstrass representation, we get the catenoid.
                                                      f
                                       Find the conjugate harmonic surface of the catenoid.
                                   2.  Let  U   2 , let f : U    be a smooth function, and let  X : U    be given by (u, v, f(u,
                                                                                            3
                                       v)), where (u, v) denote the variables in U. Show that X is a minimal surface if and only if
                                       it satisfies the non-parametric minimal surface equation:

                                                           1 q p  2   u    2pqp  1 p q  2   v   0,
                                                                         u
                                       where we have used the classical notation: p = f , q = f . Show that if f satisfies the equation
                                                                             u
                                                                                  v
                                       above then the following equations are also satisfied:
                                                                 
                                                               1 q 2           pq   , 
                                                                  2
                                                                                  2
                                                           u   1 p  q 2    v   1 p  q 2 
                                                                
                                                                               
                                                                                   
                                                                                
                                                               pq            1 p 2   . 
                                                                                  2
                                                                  2
                                                           u    1 p  q 2     v    1 p  q 2  
                                                                               
                                                                
                                               2
                                   3.  Let  f C (U)   be  a  convex  function  defined  on  a  convex  open  set  U,  and  let
                                             
                                                      2
                                         f   (p,q): U    denote the gradient of f. Prove that for any u , u   U the following
                                                                                            1
                                                                                               2
                                       inequality holds:
                                                                                0.
                                                             u  u 1   f u       f u 1
                                                                         2
                                                               2
                                   4.  Let  U    be open. A map ': U ! Rn is expanding if  x y    (x)   (y) for all x, y  U. Let
                                                n
                                               n
                                         : U    be an open expanding map. Show that the image of the ball B (x ) of radius R
                                                                                                  R
                                                                                                    0
                                                                        x
                                                                    B
                                       centered at x   U contains the disk      of radius R centered at   .  x 0  Conclude that
                                                                     R
                                                                         0
                                                 0
                                       if U =  , then  is onto  .
                                                            n
                                              n
                                   Answers: Self  Assessment
                                   1.  line of curvature                     2.        0.
                                                                                  
                                                                                     
                                   3.  parametric surface                    4.  asymptotic line
                                                                                         ˆ
                                   5.  curvature H = 0.                      6.   K (V)  A (V).
                                                                                          N
                                                                                   X
                                   7.  Bernstein’s Theorem
          332                               LOVELY PROFESSIONAL UNIVERSITY
   334   335   336   337   338   339   340   341   342   343   344