Page 352 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 352

Unit 28: Local Intrinsic Geometry of Surfaces





                                   z
                                      ,
                         i
                                    i
          Now, setting  Y   y   and  Z    we compute:                                       Notes
                           i
                                     i
                                                        i
                                                          k
                                                                       j k
                                    j
                                      k
                                                               j
                                               j k
                                                                   
                         (Y,Z)   i g y z   m ji g km y z   m g y z  g y zk g y z  ,i
                                                    ki
                                  jk
                                                             ik
                                                      mi
                                                                     jk
                                                                ,i
                         ig
                                             k
                               g jk  y j  ,i    j mi y m   z  g y j  z k  ,i    k mi z m   g Y , Z  g Y, Z .    ;i 
                                                                   ;i
                                                 ik
          This completes the proof of (13) and of the proposition.
                            i
          Definition 4. Let  Y  y   be a vector field on the Riemannian surface (U, g). Its divergence is the
                             i
          function:
                                                    i
                                               i
                                      div Y   i y   i y   i ij y . j
          Note that:
                               1                   1
                            i
                                                     im
                              2 g im  g mi,j   g mj,i   g ij,m    2 g g im,j    j log det g.
                            ij
          Thus, we see that:
                                               1
                                       div Y       i  det g y i               ...(15)
                                              det g
          Observe that this implies
                                                       
                                                              2
                                                       i
                                                          1
                                            
                                   U div Y dA   i  det g y du du .
                                             U
          Thus, Green’s Theorem in the plane implies the following proposition.
          Proposition 6. Let Y be a compactly supported vector field on the Riemannian surface (U, g).
          Then, we have:
                                           U div Y dA  0.
          Definition 5. If  f : U    is a smooth function on the Riemannian surface (U, g), its gradient f
          is the unique vector field which satisfies   g  f,Y    Y  f.
          The Laplacian of f if the divergence of the gradient of f:
                                            f = div f.
                                  ,
                               ij
          It is easy to see that  f  g f   hence
                                  j
                                 j
                                             1
                                        f      i  g ij  det g f .             ...(16)
                                                            j
                                            det g
          Thus, in view of Proposition 6, if f is compactly supported, we have:
                                            U  f dA  0.









                                           LOVELY PROFESSIONAL UNIVERSITY                                  345
   347   348   349   350   351   352   353   354   355   356   357