Page 352 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 352
Unit 28: Local Intrinsic Geometry of Surfaces
z
,
i
i
Now, setting Y y and Z we compute: Notes
i
i
i
k
j k
j
k
j
j k
(Y,Z) i g y z m ji g km y z m g y z g y zk g y z ,i
ki
jk
ik
mi
jk
,i
ig
k
g jk y j ,i j mi y m z g y j z k ,i k mi z m g Y , Z g Y, Z . ;i
;i
ik
This completes the proof of (13) and of the proposition.
i
Definition 4. Let Y y be a vector field on the Riemannian surface (U, g). Its divergence is the
i
function:
i
i
div Y i y i y i ij y . j
Note that:
1 1
i
im
2 g im g mi,j g mj,i g ij,m 2 g g im,j j log det g.
ij
Thus, we see that:
1
div Y i det g y i ...(15)
det g
Observe that this implies
2
i
1
U div Y dA i det g y du du .
U
Thus, Greens Theorem in the plane implies the following proposition.
Proposition 6. Let Y be a compactly supported vector field on the Riemannian surface (U, g).
Then, we have:
U div Y dA 0.
Definition 5. If f : U is a smooth function on the Riemannian surface (U, g), its gradient f
is the unique vector field which satisfies g f,Y Y f.
The Laplacian of f if the divergence of the gradient of f:
f = div f.
,
ij
It is easy to see that f g f hence
j
j
1
f i g ij det g f . ...(16)
j
det g
Thus, in view of Proposition 6, if f is compactly supported, we have:
U f dA 0.
LOVELY PROFESSIONAL UNIVERSITY 345