Page 410 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 410

Unit 31: Joachimsthal's Notations




                                                                                                Notes
                      dY  dS . Sin    G . d 
                                         
                                          on the generating globe
                      dX   dS . cos    E . d  

                                
                                       
                      dy   ds . Sin '   g . d  
                                          on the projection
                                
                      dx   ds . cos '   e . d  
                           1
                      d    dS .cos
                           E
                           1
                      d    dS .sin
                           G
                                1
                       dy   g .  dS .sin
                                G

                                  1
                      and : dx   e .  dS .cos
                                   E

                      dx 2   2    2  ;  dy 2  2  2
                      E/e    dS . cos   G/g    dS . sin 

                      dx 2  dy 2    2     2  )dS 2
                      E/e   G/g    (sin q   cos 

                      dx 2  dy 2  dS 2
                      E/e    G/g  

          If dS = 1 then the elementary circle on the globe has a radius of 1 (remember that capital letters
          denote elements on the generating globe, and small letters elements on the projection.)

                                           dx 2  dy 2  1
                                          E/e   G/g  

          This is an equation of an ellipse.

          Analysis of Deformation Characteristics using Tissot’s Indicatrix

          If we call the semi-major and semi-minor axes of the ellipse a, and b, then these are the directions
          of maximum and minimum distortion i.e. the principal directions. a and b are also thus called
          the principal scale factor

                                            x 2  y 2  1
                                            b    a  
          For convenience we will consider the plane x and y axes to be in the principal directions.

          Length Distortion
                                        = ds cos ’ on the plane
                                       x
                                        = dS cos  = 1 on globe
                                       X
          (There is no distortion on the globe)




                                           LOVELY PROFESSIONAL UNIVERSITY                                  403
   405   406   407   408   409   410   411   412   413   414   415