Page 410 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 410
Unit 31: Joachimsthal's Notations
Notes
dY dS . Sin G . d
on the generating globe
dX dS . cos E . d
dy ds . Sin ' g . d
on the projection
dx ds . cos ' e . d
1
d dS .cos
E
1
d dS .sin
G
1
dy g . dS .sin
G
1
and : dx e . dS .cos
E
dx 2 2 2 ; dy 2 2 2
E/e dS . cos G/g dS . sin
dx 2 dy 2 2 2 )dS 2
E/e G/g (sin q cos
dx 2 dy 2 dS 2
E/e G/g
If dS = 1 then the elementary circle on the globe has a radius of 1 (remember that capital letters
denote elements on the generating globe, and small letters elements on the projection.)
dx 2 dy 2 1
E/e G/g
This is an equation of an ellipse.
Analysis of Deformation Characteristics using Tissots Indicatrix
If we call the semi-major and semi-minor axes of the ellipse a, and b, then these are the directions
of maximum and minimum distortion i.e. the principal directions. a and b are also thus called
the principal scale factor
x 2 y 2 1
b a
For convenience we will consider the plane x and y axes to be in the principal directions.
Length Distortion
= ds cos on the plane
x
= dS cos = 1 on globe
X
(There is no distortion on the globe)
LOVELY PROFESSIONAL UNIVERSITY 403