Page 56 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 56

Unit 6: Cauchy’s Integral Formula




          where                                                                                 Notes

                                                 cosz
                                            f(z)   .
                                                 z 5
                                                  
          Observe that f is analytic on and inside C, and so,

                    cosz        f(z)
                  2      dz  =    dz  2 if(1)
                                        
                  z  6z 5     z 1
                                 
                       
                C             C
                                 cos1   i
                            = 2 i      cos1
                                 1 5    2
                                  
          6.2 Functions defined by Integrals
          Suppose C is a  curve (not  necessarily a  simple closed  curve, just a curve)  and suppose  the
          function g is continuous on C (not necessarily analytic, just continuous). Let the function G be
          defined by :

                                                 g(s)
                                          G(z) =    ds
                                                  
                                                C s z
          for all z  C. We shall show that G is analytic. Here we go.
          Consider,

                      G(z   z) G(z)  =  1    1    1  g(s)ds
                              
                            z        z C     s z   z  s z  
                                           
                                                    
                                   =      g(s)     ds.
                                                
                                        
                                     C  (s z   z)(s z)
          Next,

                  
           G(z   z) G(z)  –   g(s)  ds  =      1    1   g(s)ds
                                            
                 z        (s z) 2    (s z Dz)(s z)  (s z) 2 
                                                        
                                         
                                                  
                             
                          C          C                     
                                               
                                            
                                         
                                       (s z) (s z   z)
                                   =               2  g(s)ds
                                         
                                                  
                                     C   (s z   z)(s z)  
                                   =  z     g(s0   2 ds.
                                          
                                                   
                                       C  (s z   z)(s z)
          Now we want to show that
                                              g(s)       
                                       
                                   lim  z              ds  0.
                                                          
                                                    
                                            
                                    z 0    C (s z   z)(s z) 2  
          To that end, let M = max {|g(s)| : s  C}, and let d be the shortest distance from z to C. Thus, for
          s  C, we have |s – z|  d > 0 and also
                                |s – z – z|  |s – z| – |z|  d – |z|.
                                           LOVELY PROFESSIONAL UNIVERSITY                                   49
   51   52   53   54   55   56   57   58   59   60   61