Page 57 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 57

Complex Analysis and Differential Geometry




                    Notes          Putting this all together, we can estimate the integrand above:

                                                                 g(s)           M
                                                            (s z   z)(s z) 2    (d | z|)d 2
                                                             
                                                                      
                                                                              
                                                                                
                                   for all s  C. Finally,
                                                            g(s)                 M
                                                    z            2  ds   | z|  (d | z|)d 2 length(C),
                                                                
                                                        
                                                     C  (s z   z)(s z)         
                                   and it is clear that
                                                                       g(s)      
                                                               
                                                           lim  z              ds  0,
                                                                                  
                                                                            
                                                                    
                                                            z 0  (s z   z)(s z) 2
                                                                C                
                                   just as we set out to show. Hence G has a derivative at z, and
                                                                          g(s)
                                                                 G'(z)     2 ds
                                                                          
                                                                       C (s z)
                                   Next we see that G’ has a derivative and it is just what you think it should be. Consider
                                      G'(z   z) G'(z)   =  1      1    1   g(s)ds
                                               
                                                                        
                                                             
                                             z         z  C  (s z   z) 2  (s z) 2  
                                                       1   (s z)  (s z   z) 
                                                                          2
                                                                2
                                                             
                                                                    
                                                     =                  2  g(s)ds
                                                                    2
                                                        z  C   (s z   z) (s z)  
                                                                       
                                                              
                                                       1    2(s z) z ( z) 
                                                                        2
                                                              
                                                                   
                                                     =                 2  g(s)ds
                                                                   2
                                                        z  C  (s z   z) (s z)  
                                                                      
                                                             
                                                              
                                                          2(s z)   z  
                                                     =         2    2  g(s)ds
                                                          
                                                                   
                                                       C  (s z   z) (s z)  
                                   Next,
                                                               
                                                       G'(z   z) G'(z)  g(s)
                                                     =        z      2  C (s z) 3 ds
                                                                          
                                                          2(s z)   z    2   
                                                              
                                                     =         2    2      3  g(s)ds
                                                                   
                                                          
                                                                           
                                                       C  (s z   z) (s z)  (s z)  
                                                              2
                                                                                  2
                                                         2(s z)   z(s z) 2(s z   z) 
                                                           
                                                                        
                                                                            
                                                                    
                                                     =               2    3       g(s)ds
                                                                
                                                                         
                                                       C      (s z   z) (s z)   
                                                                               2
                                                              2
                                                                                 4 z(s z) 2( z) 
                                                         2(s z)   z(s z) 2(s z)          2
                                                           
                                                                    
                                                                        
                                                                            
                                                     =                     2    3             g(s)ds
                                                                      
                                                                                
                                                       C            (s z   z) (s z)         
          50                                LOVELY PROFESSIONAL UNIVERSITY
   52   53   54   55   56   57   58   59   60   61   62