Page 57 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 57
Complex Analysis and Differential Geometry
Notes Putting this all together, we can estimate the integrand above:
g(s) M
(s z z)(s z) 2 (d | z|)d 2
for all s C. Finally,
g(s) M
z 2 ds | z| (d | z|)d 2 length(C),
C (s z z)(s z)
and it is clear that
g(s)
lim z ds 0,
z 0 (s z z)(s z) 2
C
just as we set out to show. Hence G has a derivative at z, and
g(s)
G'(z) 2 ds
C (s z)
Next we see that G has a derivative and it is just what you think it should be. Consider
G'(z z) G'(z) = 1 1 1 g(s)ds
z z C (s z z) 2 (s z) 2
1 (s z) (s z z)
2
2
= 2 g(s)ds
2
z C (s z z) (s z)
1 2(s z) z ( z)
2
= 2 g(s)ds
2
z C (s z z) (s z)
2(s z) z
= 2 2 g(s)ds
C (s z z) (s z)
Next,
G'(z z) G'(z) g(s)
= z 2 C (s z) 3 ds
2(s z) z 2
= 2 2 3 g(s)ds
C (s z z) (s z) (s z)
2
2
2(s z) z(s z) 2(s z z)
= 2 3 g(s)ds
C (s z z) (s z)
2
2
4 z(s z) 2( z)
2(s z) z(s z) 2(s z) 2
= 2 3 g(s)ds
C (s z z) (s z)
50 LOVELY PROFESSIONAL UNIVERSITY