Page 72 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 72

Unit 7: Transformations and Conformal Mappings




          7.1.2 Definitions                                                                     Notes

          (i)  The points which coincide with their transforms under bilinear transformation are called
                                                          az b
                                                            
               its fixed points. For the bilinear transformation w =   cz d  , fixed points are given by
                                                            
                                                       az b
                                                         
                                 w = z          i.e. z =                          …(1)
                                                       cz d
                                                         
               Since (1) is a quadratic in z and has in general two different roots, therefore, there are
               generally two invariant points for a bilinear transformation.
          (ii)  If z , z , z , z  are any distinct points in the z-plane, then the ratio
                         4
                  1
                    2
                      3
                                                (z   z )(z  z )
                                                        3
                                                     2
                                                           4
                                                  1
                                    (z , z , z , z ) =   (z   z )(z  z )
                                     1
                                        2
                                            4
                                          3
                                                  2
                                                           1
                                                        4
                                                     3
               is called cross ratio of the four points z , z , z , z . This ratio is invariant under a bilinear
                                              1
                                                 2
                                                      4
                                                   3
               transformation  i.e.
                                  (w , w , w , w ) = (z , z , z , z )
                                         3
                                                        4
                                                      3
                                                    2
                                                 1
                                            4
                                   1
                                      2
          7.1.3 Transformation of a Circle
          First we show that if p and q are two given points and K is a constant, then the equation
                                         z p
                                          
                                         z q  = K,                                  (1)
                                          
          represents a circle. For this, we have
                                               |z  p| = K |z  q| 2
                                                        2
                                                    2
                                                        2
                                         (z  p) z p   = K (z  q) z q  
                                                        2
                                        (z  p) ( z  p ) = K (z  q)  (z q)
                                                        2
                                                                
                                                            
                                     zz   pz   p z pp  = K (z z qz qz qq )
                                                                   
                                                        2
                             2
                                                   2
                                        2
                       (1  K ) z z (p  qK ) z (p q   K )z = K q q pp
                                                2
                          2
                                            2
                                     2
                       
                                  
              z z         p qK   z      p qK   z  |p|   K |q| 2  = 0  …(2)
                                     2 
                          2 
                                             1 K
                                                 2
                                 1 K 
                      1 K 
          Equation (2) is of the form
                                 zz bz bz c = 0                  (c is being a real constant)
                                       
                                           
                                    
          which always represents a circle.
          Thus equation (2) represents a circle if K  1.
          If K = 1, then it represents a straight line
                                       | z  p | = | z  q |
                                           LOVELY PROFESSIONAL UNIVERSITY                                   65
   67   68   69   70   71   72   73   74   75   76   77