Page 76 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 76

Unit 7: Transformations and Conformal Mappings




          This is the required transformation, for if z = e , a = be , then                     Notes
                                                i
                                                      i
                                                  i
                                         | w | =   e  be i   = 1.
                                                be i( )   1
          If z = re , where r < 1, then
                i
                            |z  |   |  z  1| = r  2rb cos() + b   {b r   2br cos() + 1}
                                                                2
                                   2
                                             2
                                                2
                                                                    2 2
                                              = (r   1)(1  b ) < 0
                                                         2
                                                 2
          and so
                                       |z  a| < |z  1|      |z   | 2   < 1
                                                     2
                                             2
                                                            | z 1| 2
                                                             
                                                               
          i.e.                            | w | < 1
          Hence, the result.
                 Example: Show that the general transformation of the circle | z |   into the  circle
          | w | is

                                                       z    
                                                          2  ,
                                                   i
                                            w =  e     z     | a | < 
          Solution. Let the transformation be
                                                az b   a z b/a
                                                         
                                                  
                                            w =                                  …(1)
                                                        
                                                cz d   c z d/c 
                                                  
                                                         
          The points w = 0 and w = , inverse points of | w | =  correspond to inverse point z = b/a, z
          = d/c respectively of | z | = r, so we may write
                                            b       d    2
                                             = ,      ,  | a | < 
                                            a        c  
          Thus, from (1), we get


                                                      
                                                           
                                            w =   a    z   2      a    z   2    …(2)
                                                c        c    z   
                                                    z     

          Equation (2) satisfied the condition | z |   and | w | . Hence, for | z | = r, we must have
          | w | =  so that (2) becomes


                                             = | w | =   a  z    ,  z z  = r 2
                                                        c  z zz
                                                            
                                              =   a  1 z      a  1 z  
                                                 c z z     c z z  








                                           LOVELY PROFESSIONAL UNIVERSITY                                   69
   71   72   73   74   75   76   77   78   79   80   81