Page 96 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 96

Unit 8: Series




          12.  Find the limit of                                                                Notes

                                                 j
                                               n  z 
                                                 . 
                                             
                                               j 1 j  
                                               
               For what values of z does the series converge?
                                 n      
                                         j
          13.  Find a power series   c (z 1)   such that
                                      
                                  j     
                                 j 0    
                                 
                                     1    c (z 1) ,for|z 1| 1.
                                                j
                                     z     j         
                                        j 0
                                        
                               
                                         
                                 n
                                         j
          14.  Find a power series   c (z 1)   such that
                                      
                                  j     
                                 j 0    
                                 
                      
               log z =   c (z 1)j,for|z 1| 1.
                                   
                                      
                           
                        j
                      j 0
                      
          Answers: Self  Assessment
          1.   sequence                          2.   |a  – a | < 
                                                           m
                                                        n
          3.   complex functions                 4.   partial sums
                                                                              j
                                                                    j
          5.   power series.                     6.    g(z)S(z)dz   c g(z)(z z ) dz.
                                                                           
                                                                             0
                                                      C           j 0  C
                                                                  
          8.10 Further Readings
           Books      Ahelfors, D.V. : Complex Analysis
                      Conway, J.B. : Function of one complex variable
                      Pati,T. : Functions of complex variable
                      Shanti Narain : Theory of function of a complex Variable
                      Tichmarsh, E.C. : The theory of functions
                      H.S. Kasana : Complex Variables theory and applications

                      P.K. Banerji : Complex Analysis
                      Serge Lang : Complex Analysis
                      H.Lass : Vector & Tensor Analysis

                      Shanti Narayan : Tensor Analysis
                      C.E. Weatherburn : Differential Geometry
                      T.J. Wilemore : Introduction to Differential Geometry
                      Bansi Lal : Differential Geometry.




                                           LOVELY PROFESSIONAL UNIVERSITY                                   89
   91   92   93   94   95   96   97   98   99   100   101