Page 96 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 96
Unit 8: Series
12. Find the limit of Notes
j
n z
.
j 1 j
For what values of z does the series converge?
n
j
13. Find a power series c (z 1) such that
j
j 0
1 c (z 1) ,for|z 1| 1.
j
z j
j 0
n
j
14. Find a power series c (z 1) such that
j
j 0
log z = c (z 1)j,for|z 1| 1.
j
j 0
Answers: Self Assessment
1. sequence 2. |a a | <
m
n
3. complex functions 4. partial sums
j
j
5. power series. 6. g(z)S(z)dz c g(z)(z z ) dz.
0
C j 0 C
8.10 Further Readings
Books Ahelfors, D.V. : Complex Analysis
Conway, J.B. : Function of one complex variable
Pati,T. : Functions of complex variable
Shanti Narain : Theory of function of a complex Variable
Tichmarsh, E.C. : The theory of functions
H.S. Kasana : Complex Variables theory and applications
P.K. Banerji : Complex Analysis
Serge Lang : Complex Analysis
H.Lass : Vector & Tensor Analysis
Shanti Narayan : Tensor Analysis
C.E. Weatherburn : Differential Geometry
T.J. Wilemore : Introduction to Differential Geometry
Bansi Lal : Differential Geometry.
LOVELY PROFESSIONAL UNIVERSITY 89