Page 98 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 98

Unit 9: Taylor and Laurent Series




                                                                                                Notes
                                  f(s)        f(s)        j
                                                         
                                    dz        j 1 ds (z z ) , or
                                           
                                                       
                                                            0
                                                       
                                                   
                                   
                                               
                                C s z    j 0  C (s z )  
                                                 0
                                          
                                  1  f(s)        1  f(s)   
                                                                
                            f(z)       ds            ds (z z ) . j
                                                             
                                              
                                 2 i s z     j 0 2 i (s z )  C    0  j 1     0
                                                         
                                  
                                      
                                              
                                    C
          We have, thus, produced a power series having the given analytic function as a limit:
                                          
                                                   j
                                               
                                     f(z)    c (z z ) , z z  r,
                                                     
                                                 0
                                             j
                                                       0
                                          j 0
                                          
          where
                                            1    f(s)
                                              
                                        c =   2 i (s z ) j 1 ds
                                                 
                                            
                                                     
                                        j
                                                   0
                                              C
          This is the celebrated Taylor Series for f at z = z .
                                                0
          We know we may differentiate the series to get
                                              
                                                       
                                        f'(z)   jc (z z ) j 1
                                                   
                                                 j
                                                     0
                                              j 0
                                              
          and this one converges uniformly where the series for f does. We can, thus, differentiate again
          and again to obtain
                                     
                               (n)
                                                                
                                                   
                                                            
                               f (z)   j(j 1)(j 2)...(j n 1)c (z z ) j n .
                                             
                                         
                                                      
                                                              0
                                                          j
                                     j n
                                     
          Hence,
                                          f (z ) = n!c , or
                                           (n)
                                              0    n
                                               f(n)(z )
                                           c    n!  0  .
                                            n
          But we also know that,
                                            1     f(s)
                                              
                                       c   2 i (s z ) n 1 ds.
                                        n
                                                     
                                            
                                                 
                                                   0
                                              C
          This gives us,
                                       n!    f(s)
                                (n)
                                         
                               f (z )   2 i (s z ) n 1  ds,for n  0,1,2,.....
                                   0
                                                
                                       
                                            
                                              0
                                         C
          This is the famous Generalized Cauchy Integral Formula. Recall that we previously derived this
          formula for n = 0 and 1.
          What does all this tell us about the radius of convergence of a power series? Suppose we have,
                                              
                                                       j
                                         f(z)   c (z z ) ,
                                                   
                                                 j
                                                     0
                                              j 0
                                              
                                           LOVELY PROFESSIONAL UNIVERSITY                                   91
   93   94   95   96   97   98   99   100   101   102   103