Page 101 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 101

Complex Analysis and Differential Geometry




                    Notes          Hence,

                                               f(z)         f(s)        j
                                                 ds  =        j 1 ds (z z )
                                                                       
                                                                     
                                                         
                                                                          0
                                                                     
                                                         
                                                                 
                                                             
                                               
                                                               0
                                             C 2 s z   j 0  C   2  (s z )  
                                                       
                                                            f(s)   
                                                     =         j 1 ds (z z ) j
                                                         
                                                                     
                                                                       
                                                                          0
                                                             
                                                       j 0    C   2  (s z )     
                                                               0
                                                       
                                   For the second of these two integrals, note that for s  C  we have |s – z | < |z – z |, and so
                                                                                                     0
                                                                                1
                                                                                            0
                                                                                   
                                                  1          1         1     1   
                                                 s z  =  (z z ) (s z )    z z      
                                                         
                                                  
                                                                       
                                                             
                                                                
                                                                              s z 
                                                                  0
                                                           0
                                                                         0
                                                                           1    0   
                                                                                
                                                                              z z 0   
                                                         1       j            1
                                                               s z 
                                                     =          0       (s z ) j
                                                                           
                                                                             0
                                                       z z 0  j 0 z z  0   j 0  (z z ) j 1
                                                                                     
                                                        
                                                                                 
                                                             
                                                                                    0
                                                                        
                                                                   1          1      1
                                                     =   (s z ) j 1  j        j 1   j
                                                                
                                                            
                                                              0
                                                                                    
                                                                                        
                                                                   
                                                                            
                                                        j 0      (z z )   j 1 (s z )  0   (z z )
                                                                     0
                                                        
                                                                                           0
                                   As before,
                                               f(s)          f(s)      1
                                                 ds  =         j 1  ds   j
                                                          
                                                          
                                                                   
                                                
                                                              
                                                                          
                                             C 1  s z   j 1  C   1 (s z )   (z z )
                                                                0
                                                                            0
                                                        
                                                             f(s)      1
                                                     =           j 1  ds  j
                                                       
                                                          
                                                                          
                                                                   
                                                              
                                                        j 1  C   1 (s z )    (z z )
                                                        
                                                                0
                                                                            0
                                   Putting this altogether, we have the Laurent series:
                                                        1   f(s)    1  f(s)
                                                  f(z) =      ds        ds
                                                       2 i  C  2  s z  2 i C 1  s z
                                                        
                                                             
                                                                        
                                                                    
                                                            1  f(s)               1  f(s)      1
                                                     =             ds (z z )             ds      .
                                                                              j
                                                                           
                                                                        
                                                                             0
                                                                                  
                                                         
                                                                                              
                                                                    
                                                                                                     
                                                       j 0 2 i (s z )  C    0  j 1     j 1 2 i (s z0)  C     j 1    (z z ) j
                                                                                  
                                                         
                                                                                                       0
                                   Let f be defined by
                                                                          1
                                                                   f(z)      .
                                                                        z(z 1)
                                                                           
                                   First, observe that f is analytic in the region 0 < |z| < 1. Let’s find the Laurent series for f valid
                                   in this region. First,
                                                                      1     1   1
                                                              f(z)             .
                                                                   z(z 1)   z  z 1
                                                                                
                                                                      
          94                                LOVELY PROFESSIONAL UNIVERSITY
   96   97   98   99   100   101   102   103   104   105   106