Page 101 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 101
Complex Analysis and Differential Geometry
Notes Hence,
f(z) f(s) j
ds = j 1 ds (z z )
0
0
C 2 s z j 0 C 2 (s z )
f(s)
= j 1 ds (z z ) j
0
j 0 C 2 (s z )
0
For the second of these two integrals, note that for s C we have |s z | < |z z |, and so
0
1
0
1 1 1 1
s z = (z z ) (s z ) z z
s z
0
0
0
1 0
z z 0
1 j 1
s z
= 0 (s z ) j
0
z z 0 j 0 z z 0 j 0 (z z ) j 1
0
1 1 1
= (s z ) j 1 j j 1 j
0
j 0 (z z ) j 1 (s z ) 0 (z z )
0
0
As before,
f(s) f(s) 1
ds = j 1 ds j
C 1 s z j 1 C 1 (s z ) (z z )
0
0
f(s) 1
= j 1 ds j
j 1 C 1 (s z ) (z z )
0
0
Putting this altogether, we have the Laurent series:
1 f(s) 1 f(s)
f(z) = ds ds
2 i C 2 s z 2 i C 1 s z
1 f(s) 1 f(s) 1
= ds (z z ) ds .
j
0
j 0 2 i (s z ) C 0 j 1 j 1 2 i (s z0) C j 1 (z z ) j
0
Let f be defined by
1
f(z) .
z(z 1)
First, observe that f is analytic in the region 0 < |z| < 1. Lets find the Laurent series for f valid
in this region. First,
1 1 1
f(z) .
z(z 1) z z 1
94 LOVELY PROFESSIONAL UNIVERSITY