Page 105 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 105

Complex Analysis and Differential Geometry




                    Notes          Answers: Self  Assessment


                                          (z z ) j
                                            
                                   1.         0 j 1                      2.    convergence
                                        j 0 (s z )  0  
                                        
                                                                                     
                                   3.  R  < |z – z | < R 2                4.   f(z) =   z . j 
                                                0
                                         1
                                                                                    j 2
                                                                                    
                                   9.7 Further Readings



                                   Books       Ahelfors, D.V. : Complex Analysis
                                               Conway, J.B. : Function of one complex variable
                                               Pati,T. : Functions of complex variable

                                               Shanti Narain : Theory of function of a complex Variable
                                               Tichmarsh, E.C. : The theory of functions
                                               H.S. Kasana : Complex Variables theory and applications
                                               P.K. Banerji : Complex Analysis
                                               Serge Lang : Complex Analysis

                                               H.Lass : Vector & Tensor Analysis
                                               Shanti Narayan : Tensor Analysis
                                               C.E. Weatherburn : Differential Geometry

                                               T.J. Wilemore : Introduction to Differential Geometry
                                               Bansi Lal : Differential Geometry.


































          98                                LOVELY PROFESSIONAL UNIVERSITY
   100   101   102   103   104   105   106   107   108   109   110