Page 105 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 105
Complex Analysis and Differential Geometry
Notes Answers: Self Assessment
(z z ) j
1. 0 j 1 2. convergence
j 0 (s z ) 0
3. R < |z z | < R 2 4. f(z) = z . j
0
1
j 2
9.7 Further Readings
Books Ahelfors, D.V. : Complex Analysis
Conway, J.B. : Function of one complex variable
Pati,T. : Functions of complex variable
Shanti Narain : Theory of function of a complex Variable
Tichmarsh, E.C. : The theory of functions
H.S. Kasana : Complex Variables theory and applications
P.K. Banerji : Complex Analysis
Serge Lang : Complex Analysis
H.Lass : Vector & Tensor Analysis
Shanti Narayan : Tensor Analysis
C.E. Weatherburn : Differential Geometry
T.J. Wilemore : Introduction to Differential Geometry
Bansi Lal : Differential Geometry.
98 LOVELY PROFESSIONAL UNIVERSITY