Page 103 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 103

Complex Analysis and Differential Geometry




                    Notes          We have, thus, produced a power series having the given analytic function as a limit:

                                                                   
                                                                           j
                                                                       
                                                             f(z)   c (z z ) , z z  r,
                                                                              
                                                                     j
                                                                                0
                                                                          0
                                                                  j 0
                                                                   
                                   where,
                                                                    1     f(s)
                                                                c =         j 1 ds
                                                                     
                                                                         
                                                                 j  2 i (s z )  
                                                                      C
                                                                            0
                                   9.4 Keywords
                                   Taylor series: f is analytic on the open disk |z – z | < r. Let z be any point in this disk and choose
                                                                         0
                                   C to be the positively oriented circle of radius , where |z – z | <  < r. Then for s  C we have
                                                                                    0
                                                                                   
                                                   1        1         1     1         (z z ) j
                                                                                           
                                                                                             0
                                                  s z  (s z ) (z z )  (s z )  1  z z 0     0  j 1
                                                                                
                                                             
                                                                        
                                                                                              
                                                   
                                                                                      j 0 (s z )
                                                                
                                                         
                                                                          0 
                                                                  0
                                                                                       
                                                           0
                                                                              s z 
                                                                                
                                                                                  0 
                                   Cauchy Integral Formula
                                                               n!    f(s)
                                                        (n)
                                                                  
                                                        f (z )   2 i (s z ) n 1  ds,for n  0,1,2,.....
                                                            0
                                                                     
                                                                         
                                                                
                                                                       0
                                                                  C
                                   This is the famous Generalized Cauchy Integral Formula. Recall that we previously derived this
                                   formula for n = 0 and 1.
                                   9.5 Self Assessment
                                   1.  f is analytic on the open disk |z – z | < r. Let z be any point in this disk and choose C to
                                                                    0
                                       be the positively oriented circle of radius , where |z – z | <  < r. Then for s  C we
                                                                                      0
                                       have
                                                                                    
                                                    1         1          1     1      .................
                                                                                 
                                                   s z   (s z ) (z z )    (s z )  1  z z 0   
                                                    
                                                                 
                                                                         
                                                              
                                                          
                                                                           0 
                                                                   0
                                                            0
                                                                               s z 
                                                                                 
                                                                                   0 
                                   2.  The circle of ................. is the largest circle  centered at  z  inside of which the  limit f  is
                                                                                      0
                                       analytic.
                                   3.  Suppose f is analytic in the region ................., and let C be a positively oriented simple
                                       closed curve around z  in this region.
                                                         0
                                                                                                      1   
                                                                                                            j
                                   4.  Laurent series for f, the one valid for the region 1 < |z| < . When,  f(z)      z  is
                                                                                                      z  j 0
                                                                                                          
                                       equal to .................
          96                                LOVELY PROFESSIONAL UNIVERSITY
   98   99   100   101   102   103   104   105   106   107   108