Page 102 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 102
Unit 9: Taylor and Laurent Series
From our vast knowledge of the Geometric series, we have Notes
1
f(z) z . j
z j 0
Now lets find another Laurent series for f, the one valid for the region 1 < |z| < .
First,
1 1 1 .
z 1 z 1 1
z
1
Now since 1, we have
z
1 1 1 1 j z , j
z 1 z 1 1 z z
j 1
j 0
z
and so
1 1 1
f(z) z j
z z 1 z j 1
f(z) = z . j
j 2
9.3 Summary
Suppose f is analytic on the open disk |z z | < r. Let z be any point in this disk and choose C to
0
be the positively oriented circle of radius , where |z z | < < r. Then for s C, we have,
0
1 1 1 1 (z z ) j
0
s z (s z ) (z z ) (s z ) 1 z z 0 0 j 1
j 0 (s z )
0
0
0
s z
0
z z
since 0 < 1. The convergence is uniform, so we may integrate
s z 0
f(s) f(s)
j
dz j 1 ds (z z ) , or
0
0
C s z j 0 C (s z )
1 f(s) 1 f(s) j
f(z) ds ds (z z ) .
0
2 i s z j 0 2 i (s z ) C 0 j 1
C
LOVELY PROFESSIONAL UNIVERSITY 95