Page 102 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 102

Unit 9: Taylor and Laurent Series




          From our vast knowledge of the Geometric series, we have                              Notes

                                                1  
                                          f(z)     z . j
                                                z  j 0
                                                   
          Now let’s find another Laurent series for f, the one valid for the region 1 < |z| < .
          First,


                                                     
                                           1   1   1  .
                                          z 1    z  1   1   
                                           
                                                   z 

                    1
          Now since     1,  we have
                    z

                                              
                                    1    1   1   1    j     z , j 
                                   z 1    z   1   1       z  z  
                                    
                                                         j 1
                                                   j 0
                                                   
                                                         
                                            z 
          and so
                                           1   1     1  
                                     f(z)          z  j 
                                           z  z 1    z  j 1
                                               
                                                        
                                                 
                                           f(z) =   z . j 
                                                j 2
                                                 
          9.3 Summary

          Suppose f is analytic on the open disk |z – z | < r. Let z be any point in this disk and choose C to
                                             0
          be the positively oriented circle of radius , where |z – z | <  < r. Then for s  C, we have,
                                                        0
                                                          
                           1         1          1     1       (z z ) j
                                                                  
                                                                     0
                         s z    (s z ) (z z )   (s z )   1   z z 0      0  j 1
                                                        
                                                                      
                                    
                                               
                                        
                          
                                 
                                                              j 0 (s z )
                                                 0 
                                   0
                                          0
                                                              
                                                      s z 
                                                        
                                                          0 
               z z
                 
          since    0   < 1. The convergence is uniform, so we may integrate
                s z 0
                 
                                  f(s)        f(s)   
                                                             j
                                    dz        j 1 ds (z z ) , or
                                                         
                                                       
                                           
                                                            0
                                                       
                                                   
                                   
                                               
                                                 0
                                C s z    j 0  C (s z )  
                                          
                                  1  f(s)        1  f(s)        j
                                                                
                            f(z)       ds            ds (z z ) .
                                                             
                                                                  0
                                 2 i s z     j 0 2 i (s z )  C    0  j 1   
                                              
                                                         
                                  
                                      
                                              
                                    C
                                           LOVELY PROFESSIONAL UNIVERSITY                                   95
   97   98   99   100   101   102   103   104   105   106   107