Page 224 - DMTH403_ABSTRACT_ALGEBRA
P. 224

Unit 22: Polynomial Rings




          (iv)  Additive Inverse: For p (x) = a, + a x +... + a x   R[x], consider the polynomial –p(x) =  Notes
                                                     n
                                                   n
                                           1
               –a, –a x – ... –a x , – a  being the additive inverse of ai in R. Then
                            n
                   1      n     i
                p(x) + (–p(x))  = (a,, –a,,) + (a  – a ) x + ... + (a  – a )x n
                                                      n
                                                   1
                                      1
                                          1
                           = 0 + 0.x + 0.x + ... + 0.x n
                                      2
                           = 0.
               Therefore, – p(x) is the additive inverse of p(x).
          (v)  Multiplication is Associative:
               Let p(x) =a, +a x + ... +a x ,
                                   n
                          1
                                 n
               q(x) = b  + b x+ ... +b x ,
                                 m
                               m
                         1
                     0
               and t (x) = d  +d x + ... + d x , be in R [x]
                                     r
                         0
                                    r
                            1
               Then
               p(x) . q(x) = c  + c  x + .. . + c x  where s = m + n and
                                      s
                                       ,
                                     s
                             1
                         0
               ck = a b  + a b  + ... + a b  k = 0,l, ...,s .
                    k 0
                         k–1 1
                                  0 k
               Therefore,
               {p(x) . q(x)} t (x) = e  + e  x + ... +e x , t
                                         1
                                  1
                              0
               where t = s + r = m+n+r and
               e  = c d  + c d  + ... + c d k
                   k
                           1
                     0
                k
                                 0
                        k-1
                   = (a b  + ... + a b )d  + (a ,b  + ... + a b ) d  + ... + a b d .
                                       0
                                                          0 0
                                                             k
                            0 k
                    k 0
                                    k-1
                                              0 k-1
                                0
                                                   1
               Similarly, we can show that the coefficient of x  (for any k  0) in p(x) (q (x) t(x))
                                                    k
               is a b d + a , (b d  + b d ) + ... + a (b d + b , d  + ... + b d )
                                   1
                                                            0
                              0
                                             k
                        k-1
                                                              k
                     0
                  k 0
                                          0
                                 0
                            1
                                                     1
                                              0
                                                  k-1
               = e , by using the properties of + and . in R.
                 k
               Hence, {p(x).q(x)} . t(x) = p(x) . {q (x). t (x)}
          (vi)  Multiplication Distributes over Addition:
               Let p(x) = a  +a x + ... + a x ,
                                   n n
                        0
                           1
               q(x) = b  + b x + ...+ b x m
                         l
                                m
                     0
               and t(x) = d  + d, x + . . . + d  x  be in R[x],
                                       r
                        0
                                     r
               The coefficient of xk in p (x). (q(x) + t (x)) is
               c  = a  (b  + d ) + a(b  + d ) + (b  + d ) + ... + a, (b  + d ).
                                           1
                      0
                                                         k
                k
                   k
                                                     k
                                   1
                                       1
                               1
                         0
               And the coefficient of xk in p (x) q (x) + p (x) t(x) is
               (a b + a b  + ... + a b ) + (a d  + a d  + ... +a d ),
                               0 k
                k 0
                                                   0
                                                     k
                                     k
                                          k-1
                                            1
                                      0
                     k-1 1
               = a (b + d ) +a  (b + d ) + ... +a  (b  + d ) = c k
                                           k
                           k-1
                                        0
                                              k
                 k
                                 1
                       0
                    0
               This is true  k  0.
          Hence, p (x) . (q(x) + t (x) ] = p (x) . q(x) + p (x). t.(x).
          Similarly, we can prove that
          {q(x)+t(x).p(x)=q(x).p(x)+t(x).p(x)
          Thus, R [x] is a ring.
                                           LOVELY PROFESSIONAL UNIVERSITY                                  217
   219   220   221   222   223   224   225   226   227   228   229