Page 228 - DMTH403_ABSTRACT_ALGEBRA
P. 228

Unit 22: Polynomial Rings




          2.   Calculate                                                                        Notes
               (a)  (2 + 3x2 + 4x3) + (5x + x3) in Z[x].  (b)  (6 2x ) (1 2x 5x ) in Z [x].
                                                            2
                                                                        3
                                                              
                                                         
                                                                     
                                                                 
                                                                             7
               (c)  (1 + x) (1 + 2x + x ) in Z[x].  (d)  (1 x) (1 2x x ) in Z [x]
                                                                    2
                                 2
                                                              
                                                         
                                                                  
                                                                         3
               (e)  (2 + x + x ) (5x + x ) in Z[x]
                                  3
                           2
          3.   If R is a ring such that R[x] is commutative and has identity, then
               (a)  is R commutative?
               (b)  does R have identity?
          Answers: Self  Assessment
          1. (a) 2. (a) 3. (b) 4. (a) 5. (b)
          22.6 Further Readings


           Books      Dan Saracino: Abstract Algebra; A First Course.
                      Mitchell and Mitchell: An Introduction to Abstract Algebra.
                      John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).




          Online links  www.jmilne.org/math/CourseNotes/
                      www.math.niu.edu
                      www.maths.tcd.ie/
                      archives.math.utk.edu




































                                           LOVELY PROFESSIONAL UNIVERSITY                                  221
   223   224   225   226   227   228   229   230   231   232   233