Page 226 - DMTH404_STATISTICS
P. 226

Statistics



                      Notes         Solution.

                                    First we compute mean and standard deviation of the given data.

                                                   Class  Mid - values Frequency   X - 45          2
                                                                                d =         fd    fd
                                                Intervals       (X)       ( f )      10
                                                 10 - 20     15           2        - 3     -  6   18
                                                 20 - 30     25          11        - 2     - 22   44
                                                 30 - 40     35          24        - 1     - 24   24
                                                 40 - 50     45          33           0        0   0
                                                 50 - 60     55          20           1      20   20
                                                 60 -70      65           8           2      16   32
                                                 70 - 80     75           2           3        6  18
                                                  Total                 100                - 10  156

                                    Note: If the class intervals are not continuous, they should first be made so.

                                                    10
                                              -
                                       m =  45 10 ´    =  44
                                                    100

                                                            2
                                                156   æ  10 ö
                                    and  =  10     -  ç  ÷  =  10 1.55 =  12.4
                                                100   è  100 ø
                                    Table for the fitting of Normal Curve
                                                                      X - m      f z a f
                                                Class  Mid - values  z =                y =  N
                                             Intervals       (X)       s    ( from table)   s  f z a f f *
                                                                                                     e
                                              10 - 20     15       - 2.34     0.0258      0.2081      2
                                              20 - 30     25       - 1.53      0.1238     0.9984     10
                                              30 - 40     35       - 0.73     0.3056      2.4645     25
                                              40 - 50     45         0.08     0.3977      3.2073     32
                                              50 - 60     55         0.89     0.2685      2.1653     22
                                              60 -70      65         1.69     0.0957      0.7718      8
                                              70 - 80     75         2.50     0.0175      0.1411      1

                                    (b) Method of Areas
                                    Under this  method, the  probabilities or  the areas  of the random  variable  lying in  various
                                    intervals are  determined. These probabilities are  then multiplied  by  N  to get  the  expected
                                    frequencies. This procedure is explained below for the data of the above example.
                                                 Class  Lower Limit   X - 44  Area from Area under
                                                                   z =                             f *
                                              Intervals        (X)     12.4      0 to z     the class  e
                                               10 - 20     10       - 2.74     0.4969     0.0231     2
                                               20 - 30     20       - 1.94     0.4738     0.1030    10
                                               30 - 40     30       - 1.13     0.3708     0.2453    25
                                               40 - 50     40       - 0.32     0.1255     0.3099    31
                                               50 - 60     50        0.48      0.1844     0.2171    22
                                               60 -70      60        1.29      0.4015     0.0806     8
                                               70 - 80     70        2.10      0.4821     0.0160     2
                                                           80        2.90      0.4981
                                                       *Expected frequency approximated to the nearest integer.



            218                              LOVELY PROFESSIONAL UNIVERSITY
   221   222   223   224   225   226   227   228   229   230   231