Page 265 - DMTH404_STATISTICS
P. 265

Unit 18: The Weak Law



                                                                                                  Notes
                                   n
                         n  (k n(p  
                                        
                               e      ))   p q  n k
                                      k
                                   k
                        k 0        
                         
              k         n   n   n    q k   p n k
            P    p     e     (pe ) (qe  )
                     
              n           k 0 k
                              
                               q
                               
                            =  e   n    pe   qe  p  n                        ...(18.6)
                        2
                 x
            Since e   x + e  for any real x,
                        x
                             2 2         2 2
              q
                   –p
            pe  + qe   p(q + e  q  ) + q(–p + e  p  )
                         2 2   2 2  2
                                    
                         = pe  q   + qe  p    e .                                        ...(18.7)
            Substituting (18.7) into (18.6), we get
              k         2  n 
                            n
                     
            P    p     e  .
              n     
            But  n – n is minimum for  = /2 and hence
                2
              k          n 2  /4
                     
            P    p     e  ,    0.                                             ...(18.8)
              n     
            Similarly
              k           n 2 /4
                           
            P     p     £ e
              n      
            and hence we obtain Bernstein’s inequality
               k          2
            P     p     £ 2e    n  /4 .                                       ...(18.9)
               n     
            Bernstein’s inequality is more powerful than Tchebyshev’s inequalityas it states that the chances
            for the relative frequency k /n exceeding its probability p tends to zero exponentially fast as
            n  .
            Chebyshev’s inequality gives the probability of k /nto lie between and for a specific n. We can
            use Bernstein’s inequality to estimate the probability for k /nto lie between and for all large n
            Towards this, let

                                                  k      
                                         y   p       p   
                                          n
                                                  n      
            so that

                                               n     
                                                            
                                         c                 n 2 /4
                                           
                                                      
                                      P(y ) P    p     2e
                                         n
                                               k     






                                             LOVELY PROFESSIONAL UNIVERSITY                                  257
   260   261   262   263   264   265   266   267   268   269   270