Page 274 - DMTH404_STATISTICS
P. 274

Statistics



                      Notes                             M                          M      M 
                                                                                         
                                    5.   The ..................  E(X )   EX    as M, so  EX   E(X )   E(X )    and we have lim
                                                        i      i               i     i       i
                                         inf  S /n   which imlies the desired result.
                                           n n
                                    6.   If EX  =    then as t  , N /t  1/ a.s. ..................
                                             1                   t
                                    19.5 Review Questions

                                    1.   Discuss the strong law of large number.

                                    2.   Discuss examples related to large number.
                                    Answers: Self  Assessment


                                    1.  Probability Theory  2.   X  n  3.   4E|X |          4.    2y  k y k   2    4
                                                                                                  
                                                                             1
                                    5.  monotone convergence theorem implies  6.  (1/ = 0)

                                    19.6 Further Readings




                                     Books      Sheldon M. Ross,  Introduction to Probability Models, Ninth Edition, Elsevier
                                                Inc., 2007.
                                                Jan  Pukite,  Paul  Pukite,  Modeling  for  Reliability Analysis,  IEEE  Press  on
                                                Engineering of Complex Computing Systems, 1998.











































            266                              LOVELY PROFESSIONAL UNIVERSITY
   269   270   271   272   273   274   275   276   277   278   279