Page 272 - DMTH404_STATISTICS
P. 272

Statistics



                      Notes         and then use monotonicity to control the values in between. This time however, we let  > 1, and
                                           n
                                    k(n) = [a ]. Chebyshev’s inequality implies that if > 0
                                                               
                                      P(|T k(n)    ET k(n) | k(n))  2  var(T k(n) )/k(n) 2
                                     n 1                        n 1
                                                                
                                     
                                              k(n)
                                    =   2  k(n)  2   var(Y )
                                                      m
                                        n 1    m 1
                                         
                                                
                                          
                                                m 
                                    =   2    var(Y )  k(n)  2
                                         m 1     n:k(n) m
                                                     
                                          
                                    where we have used Fubini’s theorem to interchange the two summations (everything is   0).
                                                           n
                                                       n
                                                n
                                    Now k(n) = [ ] and [ ]   /2 for n  1, so summing the geometric series and noting that the
                                    first term is  m -2
                                                             [ n  2  4      2n    4(1    2  1   2
                                                                 ] 
                                                                                      ) m
                                                           n
                                                                        n
                                                          n:   m    n:   m
                                    Combining our computations shows
                                                                                     
                                                                                          2
                                                    P(|T k(n)    ET k(n) | k(n)) 4(1    2  1   2   E(Y )m  2   
                                                                         
                                                                                 ) 
                                                                                          m
                                                   n 1                               m 1
                                                                                      
                                                    
                                    by (b). Since  is arbitrary (T   – ET  )/k(n)  0. The dominated convergence theorem implies
                                                           k(n)  k(n)
                                    EY   EX  as k  , so ET  /k(n)  Ex  and we have shown T  /k(n)  EX  a.s. To handle the
                                       k    1            k(n)       1                  k(n)       1
                                    intermediate values, we observe that if k(n)  m < k(n + 1)
                                                                   T      T   T
                                                                                 
                                                                    k(n)   m   k(n 1)
                                                                            
                                                                  k(n 1)  m    k(n)
                                                                     
                                                                      n
                                    (here we use Y   0), so recalling k(n) = [ ] we have k(n + 1)/k(n)   and
                                                i
                                                        1
                                                         EX  lim inf Tm/m   lim sup T /m   EX 1
                                                            1
                                                                                   m
                                                             n          m 
                                    Since  > 1 is arbitrary the proof is complete.
                                    The next result shows that the strong law holds whenever EX  exists.
                                                                                      i
                                                                                  
                                                                       
                                    (7.2) Theorem. Let X , X , ... be i.i.d. with  EX =  and  EX < . If S  = X  + ... + X  then Sn/n  
                                                    1  2               i          i      n   1      n
                                    a.s.
                                                      M
                                                                                               M
                                                                                                    M
                                                                                    M
                                                                                                           M
                                                                    M
                                    Proof Let M > 0 and  X = Xi  M. The  X  are i.i.d with E| X | <  so if  S  =  X   ... X  then
                                                                                                         
                                                      i             i               i          i    i      n
                                                         M
                                                M
                                                                     M
                                    (7.1) implies  S /n   EX .  Since  X   X  it follows that
                                                n        i        i  i
                                                                              M
                                                              lim inf S /n   lim S /n   EX  M
                                                                     n
                                                                              n
                                                                                      i
                                                              n         n
                                                                                                              M 
                                                                                                        
                                                                               M
                                                                                      
                                    The  monotone  convergence theorem  implies  E(X )   EX     as  M,  so  EX   E(X )
                                                                                                        i
                                                                                                              i
                                                                                      i
                                                                               i
                                         M 
                                                                   S /n   which imlies the desired result.
                                       E(X )    and we have lim inf  n n
                                         i
                                    The rest of this section is devoted to applications of the strong law of large numbers.
            264                              LOVELY PROFESSIONAL UNIVERSITY
   267   268   269   270   271   272   273   274   275   276   277