Page 351 - DMTH404_STATISTICS
P. 351

Unit 24: Sampling Distributions



            In the case of sampling without replacement, we can write                             Notes

                                     N   N

                                           P -
                                                  P -
            Cov(X , X) = E(X  - m)(X - m)  = å å  ( r  m )( s  m ) p×  rs  ,
                 i  j    i     j
                                         =
                                      =
                                     r 1  s 1,
                                         
                                        s r
            where p  is the joint probability that the rth unit of population is drawn at the ith draw and the
                  rs
                                                                     1
            sth unit of population is drawn at the jth draw. We note that  p =  . Thus, we have
                                                              rs
                                                                  N (N 1-  )
                         N  N                  1
                                     P -
            Cov ( X X,  j  ) = å å  ( r  m )( s  ) m ×

                               P -
                  i
                            =
                         =
                        r 1  s 1,           N  (N 1-  )
                           s r
                            
                             1    N         N
                        =         å  ( r  m )  å  ( s  ) m
                                     P -
                                               P -
                         N (N 1-  ) r 1=   s 1,
                                            =
                                           s r
                                            
                             1    N        é  N              ù
                                               P -
                        =         å  ( r  m )  å  ( s  m -  P -  m ) ú
                                     P -
                                           ê
                                                    ) ( r
                         N (N 1-  ) r 1=   ë s 1             û
                                             =
                             1    N
                                                P -
                        =         å  ( r  m )  0 é -  ( r  ) m ù
                                    P -
                         N (N 1-  ) r 1=   ë         û
                              1     N       2       1        2     s 2
                        = -        å  ( r  ) m  = -      ×  Ns = -
                                      P -
                           N (N 1-  ) r 1=       N  (N 1-  )     (N 1-  )
            24.2 Sampling Distribution of Sample Mean
                            X +  X +      +  X n
                              1
                                  2
            We know that  X =                . In the previous section we  have shown  that if the
                                    n
            sample is random, then each of the X 's are random variable with mean m and variance s . Since
                                                                                  2
                                         i
            X  is a linear combination of these random variables, therefore, it is also a random variable with
                               1                             1
            mean equal to  ( ) =  é ë E X 1  ( )  +    +  E X n û  × nm =  m  and variance  equal to
                                                      ( ) ù =
                        E X
                                   ( ) E X+
                                            2
                               n                             n
                                                            2
                                  2   é X + X +      +  X n  ù
                                             2
                                         1
                     ( ) ( X m=
                  Var X   E   -  ) =  E ê               -  m ú
                                      ë        n           û
                                                  2
                           é (X +  X +      +  X n ) nmù  1        2
                                             -
                                  2
                              1
                        =  E ê                   ú  =  2  E éå (X -  ) m ù û
                                                              i
                                                          ë
                           ê ë        n          ú û  n
                          1  é         2                   ù
                        =  2  E êå (X -  ) m  + å å  (X -  m )( X -  ) m ú
                                                i
                                  i
                                                       j
                         n   ê ë           i j             ú û
                                            
                          1 é          2                     ù
                        =   êå E (X -  ) m  + å å  E (X -  m )( X -  ) m ú
                          2       i              i      j
                         n ê ë             i j               ú û
                                            
                                             LOVELY PROFESSIONAL UNIVERSITY                                  343
   346   347   348   349   350   351   352   353   354   355   356