Page 363 - DMTH404_STATISTICS
P. 363

2
                                                                                  Unit 25: Chi - Sqaure ( ) Distribution



                                                                                                  Notes
                   n       2   n       2
                  å  ( X -  X )  å  (X -  ) m  ( X m-  ) 2
                      i
                                   i
                   =
                  i 1          i 1                    2   2   2
                               =
            or         2     =      2    -   2     =   -   =   n 1
                                                          1
                                                               -
                                                      n
                      s           s         s  / n
                 å ( X -  X ) 2  nS 2   2
                     i
            Thus,     2     or   2   is a     -variate with (n - 1) d.f.
                     s         s
            Mean and Standard Error of S   2
                                    2
                                  nS       2
            Since the random variable   2   is a   -variate with (n - 1) d.f.,
                                  s

                         2
                      é nS ù        n     2
                                        ( ) n 1= - .
                              -
            therefore  E ê  2  ú  =  n 1  or   2  E S
                      ë  s  û       s
                               n 1    2
                                 -
                           2
                        E S
            Thus, we have  ( ) =    s ×
                                 n
                                   1          2             n
                              2                        2         2
            Further, if we define  s =  å ( X -  X )  so that  s =  S ×  , we have
                                         i
                                 n 1                      n 1
                                                            -
                                   -
                    n      2    n   n 1    2   2
                                      -
               2
                         ( ) =
            E s        × E S       ×     s ×  =  s  (See Remarks 2 below).
              ( ) =
                                 -
                   n 1         n 1    n
                     -
                                                              nS 2
                            2
            To find variance of S , we make use of the fact that variance of   2   is 2(n - 1). This implies that
                                                               s
                          2                             2
              é nS 2     ù             n 2  æ  2  n 1  2 ö
                                                  -
                        )
            E ê  2  - (n 1- ú  =  2 (n 1-  ) or   4  E S -  s ×  ÷  =  2 (n 1-  )
                                           ç
              ë  s       û             s   è     n     ø
                      ( )
                  2
                é
               E S -  E S 2  ù 2  =  2 (n 1-  )  s ×  4    or  Var S 2  2 (n 1-  )  s ×  4
                                               ( ) =
                ë         û     n 2                    n 2
                              2
            Further,  variance of  s =   variance of  æ ç  n  S ×  2 ö ÷  . This gives
                                            è  n 1   ø
                                               -
                       n 2       2     n 2    2  (n 1-  )  4  2  4
                 2
               ( ) =
            Var s         2  × Var S      2  ´   2  ×  s =    s ×
                               ( ) =
                                                           -
                     (n 1-  )        (n 1-  )   n         n 1
            Remarks:
                                       2
                                  2
            1.   The distributions of c  and S  are based upon the assumption that the parent population is
                 normal. If the parent population is not normal, it is not possible to comment upon the
                 nature of the distribution of the above statistics.
                                             LOVELY PROFESSIONAL UNIVERSITY                                  355
   358   359   360   361   362   363   364   365   366   367   368