Page 397 - DMTH404_STATISTICS
P. 397

Unit 29: Estimation of Parameters: Criteria for Estimates



            or   X(1- p) - (n - X)p = 0                                                           Notes

                        X
            This gives  ˆ  =  , where     denotes an estimator of p.
                        n

                                 d 2  log L        X
            It can also be shown that   <  0  when  ˆ  =  .
                                  d 2             n


                   Example 3: Obtain the maximum likelihood estimator of the parameter m of the Poisson
            distribution.
            Solution.

            Let X , X , ...... X be a random sample of n independent observations from the given population.
                1  2    n
            Therefore, we can write
                           e  - m .m X 1  e -  m .m X 2  e - m .m X n  e  - nm .m å  i X
                        L =      ´      ´   ......  ´  =
                            X 1 !   X 2  !       X  n !  Õ ( ) !X i

            Taking logarithm of both sides, we get

                       logL = - nm + å X  logm - å  log ( ) !X
                                      i            i
            Differentiating w.r.t. m, we get


                        d log L    å X i        å X i
                             = - n +   =  0  Þ  ˆ  m =  =  X
                         dm         m             n
            Thus, sample mean is MLE of parameter m.


                                                                     2
                   Example 4: For a normal population with parameter   and  ,  obtain the maximum
            likelihood estimators of the parameters.
            Solution.
            The probability density function of normal distribution is


                                   1   -  1  (X -  ) 2
                               )
                        f  ( ; ,X   =  e  2   2
                                   2
            Given a random sample of n independent observations, the likelihood function  L is given by
                n
            L = Õ  ( f X  i ; , ) .
                      
               i= 1
            Taking logarithm of both sides, we get

                                        2
                            æ  1   -  1  (X -  ) ö  1  1
                  log L = å log ç  e  2   2  ÷  = å log  -  2 å (X -  )   2
                            ç    2     ÷        2  2     i
                            è            ø









                                             LOVELY PROFESSIONAL UNIVERSITY                                  389
   392   393   394   395   396   397   398   399   400   401   402