Page 64 - DMTH404_STATISTICS
P. 64

Statistics



                      Notes
                                                                       Figure  5.1





















                                    where Dz = {(x,y) : xy  z}

                                                                              
                                                                     dxdy if 0 z 1.
                                                                                 
                                                                    1
                                                                   D
                                                                    z
                                            1
                                    where  D  = {(x,y) : xy  z, 0 < x < 1,0 < y < 1}
                                            z
                                    In order to evaluate the last integral, let us look at the set of all points (x,y) such that  x y  z
                                    when 0 < x < l and 0 < y < l (See Fig. 1).
                                    If 0 < x < z, then for any 0 < y < 1, the product xy  z and if x > z, then xy  z only when 0 < y <
                                    z/x. This is the region shaded in Fig. 1. Hence for 0 < z < 1

                                               Fz(z) = P[Z  z]
                                                      z  1     1  z /x
                                                                
                                                    =    dy dx      dx dx
                                                           
                                                                     
                                                      0   0     z    0   
                                                      z   1  z
                                                     
                                                    = dx    dx
                                                      0   z  x
                                                              1
                                                    = z + z [ln x] = z – z ln z.
                                                              z
                                    Therefore

                                                                      0      if z   0
                                                                     
                                                              F (z) =  z z ln z if 0    z   1
                                                                     
                                                               z
                                                                     
                                                                      1      if z   1
                                    is the distribution function of Z. The density function fz (z) of Z is obtained by differentiating Fz
                                    (z) with respect to z. Then you can check that
                                                                 f (z) = 0  if z  0 or z  1
                                                                  z
                                                                          = – ln z    if 0 < z < 1









            56                               LOVELY PROFESSIONAL UNIVERSITY
   59   60   61   62   63   64   65   66   67   68   69