Page 68 - DMTH404_STATISTICS
P. 68

Statistics



                      Notes         Now since X  and X  are independent, we have
                                              1     2
                                                                   1    1  2  1    1  2 2 x
                                                     fx , x  (x , x ) =   e   x  e  2  ,   x ,x   .
                                                                   2        2
                                                       l  2  1  2       2  1            1  2
                                    Hence by (1) the joint probability density function of (Z , Z ) is
                                                                                 1  2
                                               z   z  z   z 2 
                                    (z , z )  =  f  1  2  ,  1  |J|,   z , z  
                                       1  2                      1  2
                                                2     2  
                                       1       1 z   z 2   1 z   z 2   2  
                                                         
                                               
                                    =    exp     1        1    
                                            
                                      4       2   2    2   2    
                                                     2
                                       1       z   2  z  
                                    =    exp   1    2     , –    z ,z  
                                             
                                                                2
                                                              1
                                      4      4    4  
                                             
                                    Then the marginal density of Z  is given by
                                                              1
                                                                                 2
                                                                           1   1 z
                                                          z (z )     f(z1,z2) z 2  e ,   z   .
                                                                        
                                                                                4
                                                           1
                                                             1
                                                                                       2
                                                                 –          4
                                    Note that we can calculate the marginal density of Z2 also. It is given by
                                                                                 2
                                                                           1   1 z
                                                                                4
                                                                        
                                                          z (z )      (z ,z ) z  2  e ,   z   .
                                                                       2
                                                              2
                                                                     1
                                                                                       2
                                                           2
                                                                 –          4
                                    In other words Z  has N(0, 2) and Z  has N(0, 2) as their distribution functions. In fact Z  and Z
                                                  1              2                                        1     2
                                    are independent random variables since
                                                                 (z , z ) = z (z ) z (z )
                                                                    1  2   1  1  2  2
                                    for all z  and z .
                                          l     2
                                    We shall illustrate this method with one more example.
                                    Example 4 : Suppose X  and X  are independent random variables with common density function
                                                      1     2
                                                                     1  x /2
                                                                f (x) =   e    for 0 < x < 
                                                                     2
                                                                   = 0        otherwise.
                                                                        1
                                    Let us find the distribution function of Z  =   (X  – X ).
                                                                     1  2  1   2
                                    Here it is convenient to choose Z  = X . Note that the transformation
                                                               2   2
                                    (X , X )  (Z , Z ) gives a one-to-one mapping from the set A = { (x , x ) : 0 < x  < w, 0 < x  <  } onto
                                      1  2    1  2                                      1  2    1       2
                                    the set
                                    B = { (z , z ) : z  > 0, - < x  <  and z  > –2z }. The inverse transformation is
                                          1  2  2        2        2    l
                                                                     X  = 2Z  + Z
                                                                       1   1   2
                                    and
                                                                       X  = Z .
                                                                         2  2

            60                               LOVELY PROFESSIONAL UNIVERSITY
   63   64   65   66   67   68   69   70   71   72   73