Page 71 - DMTH404_STATISTICS
P. 71

Unit 5: Functions of Random Variables



            for i = 1, 2. We use Formula (3) to mmpute the density function of 2. For z > 0, we have  Notes

                  
            z(z) =     fx (z u)fx (u)du
                        
                     1
                            2
                  
              
              
            =  fx (z u)fx (u)du  2
                1
              0
              z    1 e  (z u)   2 e   u
                    
            =        (z u)  1 1   u  2 1  du.
                        
              0   (   1 )     (   2 )
                1   2  z  z
                   e
            =           {(z u)  1 1  u  2 1  du}
                          
               (    1 ) (  2  )  0
                  
                  1   2  2 1    1       
                                   
            =          e   z  1    (1 v)  1 1  v  2 1  dv 
                         z
               (    1 ) (  2  )  0        
                  
                                        u
                 (by the transformation v =   )
                                        z
                  1   2   z  1  2 1
            =          e  z    B(  2  ,  1 )
               (    ) (  )
                  
                 1   2
                           1  2
                                            z
                                   z
            \    z(z) =        e   z  1  2 1  , 0   
                         (      )
                           1  2
                 = 0   ,          z < 0.
            The last equality follows from the properties of beta function and gamma function.
            This example shows that the convolution of gamma distributions with parameters ( , ) and
                                                                                 l
            ( , ) is a gamma distribution with parameter (  +  , ).
              2                                     1  2
            Next we shall consider another example in which we illustrate another method called Moment
            Generating Function approach. This method is useful for finding the distribution functions of
            sums or linear combinations of independent random variables.


                   Example 6:  Suppose X  and X  are independent random variables with distributions
                                     1     2
                             2
                  2
            N[ ,  ] and N[ ,  ] respectively. Define Z = X  + X . Then the m.g.f. of Z is
               1  1       2  2                      1   2
                       Mz (t) = E [e t(X 1  + X 2 ) ]
                                   = E [e  e ]
                                 tX l
                                    tX 2
                                   = E[e ] E[e ]
                                 tX 1
                                      tX 2
            The last relation follows from the fact that e  and e lX 2   are independent random variables when
                                               tX l
            XI and X2 are independent. But we have proved earlier that








                                             LOVELY PROFESSIONAL UNIVERSITY                                   63
   66   67   68   69   70   71   72   73   74   75   76