Page 102 - DMTH503_TOPOLOGY
P. 102

Topology




                    Notes          To show that d is metric on F.
                                   (i)  d (x, y) 0. For |x  – y | 0    n
                                                      n  n
                                   (ii)  d (x, y) = 0 x = y

                                                                      1  x   y
                                       For             d (x, y) = 0     n  n  n    0
                                                                            n
                                                                   n 1  2  1  x   y n
                                                                    
                                                                    1   x   y  n
                                                                         n
                                                                     .           0   n
                                                                    2  n  1   x   y n
                                                                          n
                                                                           0
                                                                 x   y       x   y   n
                                                                     n  n     n    n   n
                                                                 x = y
                                   (iii)                  d (x, y) = d (y, x)
                                       For              |x  – y | = |y  – x |
                                                          n   n      n  n
                                   (iv)                   d (x, y)  d (x, z) + d (z, y)

                                       Here we use the fact that
                                                                       
                                                                       
                                                        1      1    1 
                                       In view of this, we have

                                                                      x  y    1
                                                          d (x, y) =    n  n  .  n
                                                                          n
                                                                    
                                                                   n 1  1  x   y n  2
                                                                      1  (x  z ) (z   y )
                                                                                 
                                                                 =    n  .  n  n   n   n
                                                                          
                                                                                   
                                                                             n
                                                                                         n
                                                                                 n
                                                                                     n
                                                                    
                                                                   n 1  2  1 (x   z ) (z   y )
                                                                      1  x   z      1  z   y
                                                                     n  .  n  n     n  .  n  n
                                                                                            n
                                                                            n
                                                                    
                                                                                    
                                                                   n 1  2  1  x   z  n  n 1  2  1  z  y  n
                                                                 = d (x, z) + d (z, y)
                                   Thus d is metric on F. The fair (F, d) is a metric space and this metric space is called Frechet space.
                                          Example 7: In a metric space (X, d), prove that
                                                       F is closed  D (F) F.
                                   Prove that a subset F of a metric space X contains all its limit points iff X – F is open.
                                   Solution: Let (X, d) be a metric space and F X.
                                   We know that F is closed X – F is open.
                                   Step I: Let X – F be open so that F is closed,
                                   Aim: D (F) F.






          96                                LOVELY PROFESSIONAL UNIVERSITY
   97   98   99   100   101   102   103   104   105   106   107