Page 103 - DMTH503_TOPOLOGY
P. 103

Unit 9: The Metric Topology




          Let x X – F be arbitrary. Then X – F is an open set containing x s.t. (X – F) F = .  Notes
          x is not a limit point of F
                                         x D (F) x X – D (F)
          Thus,                x X – F  x X – D (F)

                                  X – F  X – D (F)
          or,                      D (F)  F
          Step II: Given D (F)  F.                                                ...(1)
          To prove F is closed.

          Let y X – F, then y  F
                          y F, D (F)  F  y D (F)
                                         open set G with y G s.t.
                             (G – {y}) F = 

                                         G F = as y F
                                         G X – F
          Thus we have show that
                            any y X – F  open set G with y G s.t. G X – F

                                         X – F is open F is closed.

          9.2 Summary

              Let X be any given space. Let x, y, z, X be arbitrary. A function d : X × X R having
               the properties listed below:

               (i)  d (x, y) 0
               (ii)  d (x, y) = 0  iff  x = y
               (iii)  d (x, y) = d (y, x)
               (iv)  d (x, y) + d (y, z)  d (x, z)
               is called a distance function or a metric for X.

              Let X be any given space. Let x, y, z X be arbitrary. A function d : X × X R having
               the properties listed below:
               (i)  d (x, y) 0

               (ii)  d (x, y) = 0  if  x = y
               (iii)  d (x, y) = d (y, x)
               (iv)  d (x, y) + d (y, z) d (x, z), where x, y, z X is called pseudo metric on X.

                                                    +
              Let (X, ) be a metric space. Let x  X and r R . Then set {x X :  (x , x) < r} is defined as
                                         0                            0
               open sphere with centre x  and radius r.
                                    0
              Closed sphere:
               S  [x ] = {x X : (x, x ) x}
                r  0             0



                                           LOVELY PROFESSIONAL UNIVERSITY                                   97
   98   99   100   101   102   103   104   105   106   107   108