Page 62 - DMTH503_TOPOLOGY
P. 62

Topology




                    Notes          Theorem 1: A subspace of a topological space is itself a topological space.
                                   Proof:
                                   (i)    T and    Y =     T ,
                                                                    Y
                                       X  T and   X  Y = Y  Y  T ,
                                                                    Y
                                   (ii)  Let {H  :   } be any family of sets in T .
                                                                        Y
                                       Then      a set G   T such that H  = G   Y
                                                                         
                                            {H  :   } =  {G   Y :   }
                                                           
                                                       = [   {G  :   }]  Y  T
                                                                          Y
                                       since   {G  :   }  
                                                
                                   (iii)  Let H  and H  be any two sets in T .
                                            1     2                Y
                                       Then H  = G   Y and H  = G   Y for some G , G   T.
                                             1   1         2   2            1  2
                                               H   H  = (G   Y)   (G    Y)
                                                 1    2   1        2
                                                       = (G   G )  Y  T , since G   G   T
                                                          1   2       Y       1   2
                                       Hence, T  is a topology for Y.
                                               Y
                                          Example 3: Let (Y, V) be a subspace of a topological space (X, T) and let (Z, W) be a
                                   subspace of (Y, V). Then prove that (Z, W) is a subspace of (X, T).
                                   Solution: Given that  (Y, V)  (X, T)                                   …(1)
                                          and           (Z, W)  (Y, V)                                    …(2)
                                   We are to prove that  (Z, W)  (X, T)
                                   From (1) and (2), we get

                                                        Z  Y  X                                          …(3)
                                   From (1),                V = {G   Y : G  T}                            …(4)
                                   and (2),                W = {H  Z : H  V}                             …(5)
                                   From (4) and (5), we get  H = G  Y
                                                       H  Z = (G  Y)  Z
                                                              = G  (Y  Z)
                                                              = G  Z      [Using (3)]

                                   so,                  H  Z = G  Z                                      …(6)
                                   Using (6) in (5), we get
                                                           W = {G  Z : G  T}
                                                       (Z, W)  (X, T)
                                   Hence, (Z, W) is a subspace of (X, T).


                                          Example 4: If T is usual topology  on , then find relative topology   on   .
                                   Solution: Every open interval on  is T-open set.

                                                                æ   1    1 ö
                                   Let                      G =  ç è n -  2  , n + ÷  , n  .
                                                                         2 ø


          56                                LOVELY PROFESSIONAL UNIVERSITY
   57   58   59   60   61   62   63   64   65   66   67