Page 64 - DMTH503_TOPOLOGY
P. 64

Topology




                    Notes          Theorem 2: Let (Y,  ) be a subspace of a topological space (X, T). A subset of Y is  -nhd. of a point
                                   y  Y iff it is the intersection of Y with a T-nhd. of the point y  Y.
                                   Proof: Let (Y,  )  (X, T) and y  Y be arbitrary, then y  X.

                                   (I)  Let N  be a  -nhd of y, then
                                            1
                                                    V      s.t.  y  V  N                               …(1)
                                                                          1
                                       To prove :          N  = N   Y for some T-nhd N  of y.
                                                             1   2                  2
                                                    y  V      G  T s.t. V = G  Y

                                                              y  G  Y  y  G, y  Y                    …(2)
                                       Write               N  = N   G.
                                                             2   1
                                       Then             N   N , G  N .
                                                         1    2      2
                                       so, (2) implies y  G  N , where G  T
                                                            2
                                       This shows that N  is a T-nhd of y.
                                                      2
                                                        N   Y = (N   G)  Y
                                                         2       1
                                                              = (N   Y)  (G  Y)
                                                                 1
                                                              = (N   Y)  V
                                                                 1
                                                              = N   V                                   [by (1)]
                                                                 1
                                                              = N             N   Y  and  V  N
                                                                 1             1               1
                                       Finally, N  has the following properties
                                                2
                                                           N  = N   Y  and  N  is a T-nhd of y.
                                                             1   2           2
                                       This completes the proof.
                                   (II)  Conversely, Let N  be a T-nhd. of y so that
                                                      2
                                                    A  T s.t.  y  A  N                                 …(3)
                                                                          2
                                       We are to prove that N   Y is a  -nhd of y.
                                                          2
                                                 y  Y, y  A  y  Y  A                               [by (3)]

                                                              y  A  Y  N   Y                        [by (3)]
                                                                           2
                                                        A  T  A  Y 
                                       Thus, we have y  A  Y  N   Y, where A  Y   .
                                                               2
                                        N   Y is a  -nhd of y.
                                           2

                                          Example 7: Let (Y,  ) be a subspace of a topological space (X, T). Then every  -open set
                                   is also T-open iff Y is T-open.
                                   Solution: Let        (Y,  )  (X, T) and let
                                   any                  G     G  T                                      …(1)
                                   i.e. every  -open set is also T-open set.

                                   To show: Y is T-open, it is enough to prove that y  T.





          58                                LOVELY PROFESSIONAL UNIVERSITY
   59   60   61   62   63   64   65   66   67   68   69