Page 238 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 238

Unit 15: Cauchy’s Problem and Characteristics for First Order Equations




          Finally from (6)                                                                      Notes
                                  t
                      x = p +   = 2  (e  1) +
                            t
          or          x =  (2e    1)                                              ...(15)
          Substituting these values of x, y, p, q in the equation for z (t), we have

                    dz
                                          t
                                                t
                            t
                                    t
                        = 2 (e    1) (2  e ) +   (e  + 1) (ve )
                    dt
                    dz
                          2
                                 2
                            2t
          or            = 5  e    3  e t                                          ...(16)
                    dt
          on Integration of (16) we have
                         5  2
                                        t
                                      2
                              2t
                      z =   (e    1)   3  (e    1)                                ...(17)
                          2
          From (13) and (15)
                            t
                                      t
                  x   2y =  (2e    1)   2  (e    1)
          or      x   2y = ,                                                      ...(18)
                           t
                                     t
          and      y   x =  (e    1)     (2e    1)
                   y   x =   e t
          so using (18) we have by eliminating  , we get
                          y x
                      t
                     e  =                                                         ...(19)
                         2y x
                                  t
          Substituting these values of e  and   into equation (17) we have
                                         2
                         5      2   y x              2  y x
                      z =  x  2y           1  3 x  2y         1
                         2         2y x                2y x
                         5     2  5      2                      2
                                                     y
                       =  (y x )   (x  2 )  3(y x )(x  2 ) 3(x  2 )
                                                              y
                                       y
                         2        2
                         5     2  1      2       2
                                                     y
                                       y
                       =  (y x )   (x  2 )  3(y x )  3 (y x )
                         2        2
                          1  2       2  1  2        2    2
                       =   (y   2yx x  )  (x  4xy  4y  ) 3y  3xy
                          2             2
                          3  2      1
                                            y
                       =    y  2xy   y (4x  3 )
                          2         2
                         y
                                y
          or          z =  (4x  3 )                                               ...(20)
                         2
          is the solution of the equation (1).







                                           LOVELY PROFESSIONAL UNIVERSITY                                   231
   233   234   235   236   237   238   239   240   241   242   243