Page 365 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 365

Differential and Integral Equation




                    Notes                                2
                                                       2 d R   dR
                                                      r      2r     ( n n  1)R = 0                         ...(6)
                                                        dr  2  dr
                                            1  d      d              2
                                   and            sin       ( n n  1)      = 0                             ...(7)
                                           sin d      d            sin  2

                                   To solve (6), let
                                                                               p
                                                                         r = e ,
                                                                        dr     p
                                   so that                                 = e    r
                                                                        dp

                                                                        dR    dR  dp  1 dR
                                   Therefore                               =     .
                                                                        dr     dr dr  r dp
                                                                        d      d
                                   or                                  r   =
                                                                        dr    dp

                                                         d
                                   Let us denote the operator    by D, then
                                                         dp

                                                                                 2
                                                                   d   dR      2 d R  dR
                                                                 r   r     = r       r
                                                                   dr  dr       dr  2  dr
                                                                        2
                                                                      2 d R     d  dR    dR
                                   So                                r   2  =  r  r     r
                                                                       dr      dr   dr   dr
                                                                                d    d
                                                                           = r     r    1 R
                                                                               dr   dr
                                                                           = D (D  1)R

                                   Using these values in (6), we get
                                                      D (D  1) 2D n (n  1) R = 0

                                   or                      (D n )(D n  1)R = 0                            ...(6a)

                                   The solution of (6a) is

                                                                         R = A e np  B e  ( n  1) p

                                   or                                    R = A r n  B r  (n  1)            ...(5)
                                   To solve (7) put  cos  µ

                                                                       d      d  dµ       d
                                   so that                                 =          sin
                                                                       d      dµ d        dµ
                                   Substituting these values in (7) we have






          358                               LOVELY PROFESSIONAL UNIVERSITY
   360   361   362   363   364   365   366   367   368   369   370